[PATCH -mm 2/2] kexec jump -v12: save/restore device state
Huang Ying
ying.huang at intel.com
Sun Jul 6 23:25:24 EDT 2008
This patch implements devices state save/restore before after kexec.
This patch together with features in kexec_jump patch can be used for
following:
- A simple hibernation implementation without ACPI support. You can
kexec a hibernating kernel, save the memory image of original system
and shutdown the system. When resuming, you restore the memory image
of original system via ordinary kexec load then jump back.
- Kernel/system debug through making system snapshot. You can make
system snapshot, jump back, do some thing and make another system
snapshot.
- Cooperative multi-kernel/system. With kexec jump, you can switch
between several kernels/systems quickly without boot process except
the first time. This appears like swap a whole kernel/system out/in.
- A general method to call program in physical mode (paging turning
off). This can be used to invoke BIOS code under Linux.
The following user-space tools can be used with kexec jump:
- kexec-tools needs to be patched to support kexec jump. The patches
and the precompiled kexec can be download from the following URL:
source: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-src_git_kh10.tar.bz2
patches: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-patches_git_kh10.tar.bz2
binary: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec_git_kh10
- makedumpfile with patches are used as memory image saving tool, it
can exclude free pages from original kernel memory image file. The
patches and the precompiled makedumpfile can be download from the
following URL:
source: http://khibernation.sourceforge.net/download/release_v10/makedumpfile/makedumpfile-src_cvs_kh10.tar.bz2
patches: http://khibernation.sourceforge.net/download/release_v10/makedumpfile/makedumpfile-patches_cvs_kh10.tar.bz2
binary: http://khibernation.sourceforge.net/download/release_v10/makedumpfile/makedumpfile_cvs_kh10
- An initramfs image can be used as the root file system of kexeced
kernel. An initramfs image built with "BuildRoot" can be downloaded
from the following URL:
initramfs image: http://khibernation.sourceforge.net/download/release_v10/initramfs/rootfs_cvs_kh10.gz
All user space tools above are included in the initramfs image.
Usage example of simple hibernation:
1. Compile and install patched kernel with following options selected:
CONFIG_X86_32=y
CONFIG_RELOCATABLE=y
CONFIG_KEXEC=y
CONFIG_CRASH_DUMP=y
CONFIG_PM=y
CONFIG_HIBERNATION=y
CONFIG_KEXEC_JUMP=y
2. Build an initramfs image contains kexec-tool and makedumpfile, or
download the pre-built initramfs image, called rootfs.gz in
following text.
3. Prepare a partition to save memory image of original kernel, called
hibernating partition in following text.
4. Boot kernel compiled in step 1 (kernel A).
5. In the kernel A, load kernel compiled in step 1 (kernel B) with
/sbin/kexec. The shell command line can be as follow:
/sbin/kexec --load-preserve-context /boot/bzImage --mem-min=0x100000
--mem-max=0xffffff --initrd=rootfs.gz
6. Boot the kernel B with following shell command line:
/sbin/kexec -e
7. The kernel B will boot as normal kexec. In kernel B the memory
image of kernel A can be saved into hibernating partition as
follow:
jump_back_entry=`cat /proc/cmdline | tr ' ' '\n' | grep kexec_jump_back_entry | cut -d '='`
echo $jump_back_entry > kexec_jump_back_entry
cp /proc/vmcore dump.elf
Then you can shutdown the machine as normal.
8. Boot kernel compiled in step 1 (kernel C). Use the rootfs.gz as
root file system.
9. In kernel C, load the memory image of kernel A as follow:
/sbin/kexec -l --args-none --entry=`cat kexec_jump_back_entry` dump.elf
10. Jump back to the kernel A as follow:
/sbin/kexec -e
Then, kernel A is resumed.
Implementation point:
To support jumping between two kernels, before jumping to (executing)
the new kernel and jumping back to the original kernel, the devices
are put into quiescent state, and the state of devices and CPU is
saved. After jumping back from kexeced kernel and jumping to the new
kernel, the state of devices and CPU are restored accordingly. The
devices/CPU state save/restore code of software suspend is called to
implement corresponding function.
Known issues:
- Because the segment number supported by sys_kexec_load is limited,
hibernation image with many segments may not be load. This is
planned to be eliminated by adding a new flag to sys_kexec_load to
make a image can be loaded with multiple sys_kexec_load invoking.
ChangeLog:
v12:
- Add dependency of HIBERNATION for CONFIG_KEXEC_JUMP to resolve
dependency problem.
v11:
- Add disable_IO_APIC() to machine_kexec() to put IO APIC into legacy
mode before executing new kernel.
- Base on top of new hibernation/restore device driver callback.
v10:
- Split from original kexec_jump patch.
Now, only the i386 architecture is supported. The patchset is based on
Linux kernel 2.6.26-rc8-mm1, and has been tested on IBM T42 with ACPI
on and off.
Signed-off-by: Huang Ying <ying.huang at intel.com>
---
arch/x86/Kconfig | 5 ++--
arch/x86/kernel/machine_kexec_32.c | 12 +++++++++++
include/linux/suspend.h | 2 +
kernel/kexec.c | 39 +++++++++++++++++++++++++++++++++++++
kernel/power/power.h | 2 -
5 files changed, 56 insertions(+), 4 deletions(-)
--- a/kernel/kexec.c
+++ b/kernel/kexec.c
@@ -26,6 +26,10 @@
#include <linux/numa.h>
#include <linux/suspend.h>
#include <linux/device.h>
+#include <linux/freezer.h>
+#include <linux/pm.h>
+#include <linux/cpu.h>
+#include <linux/console.h>
#include <asm/page.h>
#include <asm/uaccess.h>
@@ -1441,7 +1445,31 @@ int kernel_kexec(void)
if (kexec_image->preserve_context) {
#ifdef CONFIG_KEXEC_JUMP
+ mutex_lock(&pm_mutex);
+ pm_prepare_console();
+ error = freeze_processes();
+ if (error) {
+ error = -EBUSY;
+ goto Restore_console;
+ }
+ suspend_console();
+ error = device_suspend(PMSG_FREEZE);
+ if (error)
+ goto Resume_console;
+ error = disable_nonboot_cpus();
+ if (error)
+ goto Resume_devices;
local_irq_disable();
+ /* At this point, device_suspend() has been called,
+ * but *not* device_power_down(). We *must*
+ * device_power_down() now. Otherwise, drivers for
+ * some devices (e.g. interrupt controllers) become
+ * desynchronized with the actual state of the
+ * hardware at resume time, and evil weirdness ensues.
+ */
+ error = device_power_down(PMSG_FREEZE);
+ if (error)
+ goto Enable_irqs;
save_processor_state();
#endif
} else {
@@ -1459,7 +1487,18 @@ int kernel_kexec(void)
if (kexec_image->preserve_context) {
#ifdef CONFIG_KEXEC_JUMP
restore_processor_state();
+ device_power_up(PMSG_RESTORE);
+ Enable_irqs:
local_irq_enable();
+ enable_nonboot_cpus();
+ Resume_devices:
+ device_resume(PMSG_RESTORE);
+ Resume_console:
+ resume_console();
+ thaw_processes();
+ Restore_console:
+ pm_restore_console();
+ mutex_unlock(&pm_mutex);
#endif
}
--- a/kernel/power/power.h
+++ b/kernel/power/power.h
@@ -53,8 +53,6 @@ extern int hibernation_platform_enter(vo
extern int pfn_is_nosave(unsigned long);
-extern struct mutex pm_mutex;
-
#define power_attr(_name) \
static struct kobj_attribute _name##_attr = { \
.attr = { \
--- a/include/linux/suspend.h
+++ b/include/linux/suspend.h
@@ -278,4 +278,6 @@ static inline void register_nosave_regio
}
#endif
+extern struct mutex pm_mutex;
+
#endif /* _LINUX_SUSPEND_H */
--- a/arch/x86/kernel/machine_kexec_32.c
+++ b/arch/x86/kernel/machine_kexec_32.c
@@ -125,6 +125,18 @@ void machine_kexec(struct kimage *image)
/* Interrupts aren't acceptable while we reboot */
local_irq_disable();
+ if (image->preserve_context) {
+#ifdef CONFIG_X86_IO_APIC
+ /* We need to put APICs in legacy mode so that we can
+ * get timer interrupts in second kernel. kexec/kdump
+ * paths already have calls to disable_IO_APIC() in
+ * one form or other. kexec jump path also need
+ * one.
+ */
+ disable_IO_APIC();
+#endif
+ }
+
control_page = page_address(image->control_code_page);
memcpy(control_page, relocate_kernel, PAGE_SIZE/2);
--- a/arch/x86/Kconfig
+++ b/arch/x86/Kconfig
@@ -1276,9 +1276,10 @@ config CRASH_DUMP
config KEXEC_JUMP
bool "kexec jump (EXPERIMENTAL)"
depends on EXPERIMENTAL
- depends on KEXEC && PM_SLEEP && X86_32
+ depends on KEXEC && HIBERNATION && X86_32
help
- Invoke code in physical address mode via KEXEC
+ Jump between original kernel and kexeced kernel and invoke
+ code in physical address mode via KEXEC
config PHYSICAL_START
hex "Physical address where the kernel is loaded" if (EMBEDDED || CRASH_DUMP)
More information about the kexec
mailing list