[PATCH 2/3] nand: add NXP IFC nand driver
Renaud Barbier
renaud.barbier at abaco.com
Fri Aug 13 01:16:47 PDT 2021
Add the NXP IFC nand driver support. This driver
can be used with the NXP QorIQ cores.
Originally, derived from U-boot commit cce573e (2015-10)
Signed-off-by: Renaud Barbier <renaud.barbier at abaco.com>
---
drivers/mtd/nand/Kconfig | 7 +
drivers/mtd/nand/Makefile | 1 +
drivers/mtd/nand/fsl_ifc.h | 116 ++++
drivers/mtd/nand/nand_fsl_ifc.c | 1038 +++++++++++++++++++++++++++++++
include/linux/fsl_ifc.h | 305 +++++++++
5 files changed, 1467 insertions(+)
create mode 100644 drivers/mtd/nand/fsl_ifc.h
create mode 100644 drivers/mtd/nand/nand_fsl_ifc.c
create mode 100644 include/linux/fsl_ifc.h
diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
index c69e5ce4e1..cf9f1fdc0c 100644
--- a/drivers/mtd/nand/Kconfig
+++ b/drivers/mtd/nand/Kconfig
@@ -42,6 +42,13 @@ config NAND_IMX
and later, which use the GPMI NAND controller from the MXS series.
See the i.MX 'mxs' driver for those chips.
+config NAND_FSL_IFC
+ bool
+ prompt "FSL IFC NAND driver"
+ depends on ARCH_LAYERSCAPE
+ help
+ Freescale IFC NAND driver for various chips.
+
config NAND_MXS
bool
select STMP_DEVICE
diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
index f6e5b41e94..4fd14ddd63 100644
--- a/drivers/mtd/nand/Makefile
+++ b/drivers/mtd/nand/Makefile
@@ -22,3 +22,4 @@ pbl-$(CONFIG_NAND_S3C24XX) += nand_s3c24xx.o
obj-$(CONFIG_NAND_MXS) += nand_mxs.o
obj-$(CONFIG_MTD_NAND_DENALI) += nand_denali.o
obj-$(CONFIG_MTD_NAND_DENALI_DT) += nand_denali_dt.o
+obj-$(CONFIG_NAND_FSL_IFC) += nand_fsl_ifc.o
diff --git a/drivers/mtd/nand/fsl_ifc.h b/drivers/mtd/nand/fsl_ifc.h
new file mode 100644
index 0000000000..4c89f569f5
--- /dev/null
+++ b/drivers/mtd/nand/fsl_ifc.h
@@ -0,0 +1,116 @@
+/* SPDX-License-Identifier: GPL-2.0+ */
+/*
+ * Copyright 2010-2011 Freescale Semiconductor, Inc.
+ *
+ */
+
+/*
+ * The actual number of banks implemented depends on the IFC version
+ * - IFC version 1.0 implements 4 banks.
+ * - IFC version 1.1 onward implements 8 banks.
+ */
+#define FSL_IFC_BANK_COUNT 8
+
+#define FSL_IFC_REV 0x0000
+#define FSL_IFC_V1_1_0 0x01010000
+#define FSL_IFC_V2_0_0 0x02000000
+
+/*
+ * Version 1.1.0 adds offset 0x1000
+ * Version 2.0.0 adds offset 0x10000
+ */
+#define FSL_IFC_NCFGR 0x000
+
+#define IFC_NAND_SRAM_INIT_EN 0x20000000
+
+/*
+ * NAND Flash Command Registers (NAND_FCR0/NAND_FCR1)
+ */
+#define FSL_IFC_FCR0 0x014
+/* General purpose FCM flash command bytes CMD0-CMD7 */
+#define IFC_NAND_FCR0_CMD0_SHIFT 24
+#define IFC_NAND_FCR0_CMD1_SHIFT 16
+#define IFC_NAND_FCR0_CMD2_SHIFT 8
+#define IFC_NAND_FCR0_CMD3_SHIFT 0
+#define FSL_IFC_ROW0 0x03c
+#define IFC_NAND_COL_MS 0x80000000
+#define FSL_IFC_COL0 0x044
+#define FSL_IFC_ROW3 0x06c
+#define FSL_IFC_NAND_BC 0x108
+/*
+ * NAND Flash Instruction Registers (NAND_FIR0/NAND_FIR1/NAND_FIR2)
+ */
+#define FSL_IFC_FIR0 0x110
+/* NAND Machine specific opcodes OP0-OP14*/
+#define IFC_NAND_FIR0_OP0_SHIFT 26
+#define IFC_NAND_FIR0_OP1_SHIFT 20
+#define IFC_NAND_FIR0_OP2_SHIFT 14
+#define IFC_NAND_FIR0_OP3_SHIFT 8
+#define IFC_NAND_FIR0_OP4_SHIFT 2
+#define FSL_IFC_FIR1 0x114
+#define IFC_NAND_FIR1_OP5_SHIFT 26
+#define IFC_NAND_FIR1_OP6_SHIFT 20
+#define IFC_NAND_FIR1_OP7_SHIFT 14
+#define IFC_NAND_FIR1_OP8_SHIFT 8
+#define FSL_IFC_NAND_CSEL 0x15c
+#define IFC_NAND_CSEL_SHIFT 26
+#define FSL_IFC_NANDSEQ_STRT 0x164
+#define IFC_NAND_SEQ_STRT_FIR_STRT 0x80000000
+/* NAND Event and Error Status Register */
+#define FSL_IFC_NAND_EVTER_STAT 0x16c
+#define IFC_NAND_EVTER_STAT_OPC 0x80000000
+#define IFC_NAND_EVTER_STAT_FTOER 0x08000000
+#define IFC_NAND_EVTER_STAT_WPER 0x04000000
+/* NAND Flash Page Read Completion Event Status Register */
+#define FSL_IFC_PGRDCMPL_EVT_STAT 0x174
+/* NAND Event and Error Enable Register (NAND_EVTER_EN) */
+#define FSL_IFC_EVTER_EN 0x180
+#define IFC_NAND_EVTER_EN_OPC_EN 0x80000000
+#define IFC_NAND_EVTER_EN_PGRDCMPL_EN 0x20000000
+#define IFC_NAND_EVTER_EN_FTOER_EN 0x08000000
+#define IFC_NAND_EVTER_EN_WPER_EN 0x04000000
+
+#define FSL_IFC_NAND_FSR 0x1e0
+#define FSL_IFC_ECCSTAT(v) (0x1e8 + (4 * v))
+#define IFC_NAND_EVTER_STAT_ECCER 0x02000000
+
+/*
+ * Instruction opcodes to be programmed
+ * in FIR registers- 6bits
+ */
+enum ifc_nand_fir_opcodes {
+ IFC_FIR_OP_NOP,
+ IFC_FIR_OP_CA0,
+ IFC_FIR_OP_CA1,
+ IFC_FIR_OP_CA2,
+ IFC_FIR_OP_CA3,
+ IFC_FIR_OP_RA0,
+ IFC_FIR_OP_RA1,
+ IFC_FIR_OP_RA2,
+ IFC_FIR_OP_RA3,
+ IFC_FIR_OP_CMD0,
+ IFC_FIR_OP_CMD1,
+ IFC_FIR_OP_CMD2,
+ IFC_FIR_OP_CMD3,
+ IFC_FIR_OP_CMD4,
+ IFC_FIR_OP_CMD5,
+ IFC_FIR_OP_CMD6,
+ IFC_FIR_OP_CMD7,
+ IFC_FIR_OP_CW0,
+ IFC_FIR_OP_CW1,
+ IFC_FIR_OP_CW2,
+ IFC_FIR_OP_CW3,
+ IFC_FIR_OP_CW4,
+ IFC_FIR_OP_CW5,
+ IFC_FIR_OP_CW6,
+ IFC_FIR_OP_CW7,
+ IFC_FIR_OP_WBCD,
+ IFC_FIR_OP_RBCD,
+ IFC_FIR_OP_BTRD,
+ IFC_FIR_OP_RDSTAT,
+ IFC_FIR_OP_NWAIT,
+ IFC_FIR_OP_WFR,
+ IFC_FIR_OP_SBRD,
+ IFC_FIR_OP_UA,
+ IFC_FIR_OP_RB,
+};
diff --git a/drivers/mtd/nand/nand_fsl_ifc.c b/drivers/mtd/nand/nand_fsl_ifc.c
new file mode 100644
index 0000000000..64dc9c225f
--- /dev/null
+++ b/drivers/mtd/nand/nand_fsl_ifc.c
@@ -0,0 +1,1038 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
+/* Integrated Flash Controller NAND Machine Driver
+ *
+ * Copyright (c) 2012 Freescale Semiconductor, Inc
+ *
+ * Authors: Dipen Dudhat <Dipen.Dudhat at freescale.com>
+ *
+ */
+
+#include <config.h>
+#include <common.h>
+#include <driver.h>
+#include <init.h>
+#include <malloc.h>
+#include <nand.h>
+#include <errno.h>
+#include <clock.h>
+#include <io.h>
+#include <of_address.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/rawnand.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/fsl_ifc.h>
+#include <asm-generic/io.h>
+#include "fsl_ifc.h"
+
+#define ERR_BYTE 0xFF
+#define IFC_TIMEOUT_MS 500
+/* overview of the fsl ifc controller */
+struct fsl_ifc_ctrl {
+ struct nand_controller controller;
+ /* device info */
+ void __iomem *rregs; /* Run-time register */
+ void __iomem *gregs; /* Global registers */
+ uint32_t version;
+ uint32_t page; /* Last page written to / read from */
+ uint32_t read_bytes; /* Number of bytes read during command */
+ uint32_t column; /* Saved column from SEQIN */
+ uint32_t index; /* Pointer to next byte to 'read' */
+ uint32_t nand_stat; /* status read from NEESR after last op */
+ uint32_t oob; /* Non zero if operating on OOB data */
+ uint32_t eccread; /* Non zero for a full-page ECC read */
+ uint32_t max_bitflips; /* Saved during READ0 cmd */
+ void __iomem *addr; /* Address of assigned IFC buffer */
+};
+
+/* mtd information per set */
+struct fsl_ifc_mtd {
+ struct device_d *dev;
+ struct nand_chip chip;
+ struct fsl_ifc_ctrl *ctrl;
+ uint32_t cs; /* On which chipsel NAND is connected */
+ uint32_t bufnum_mask; /* bufnum = page & bufnum_mask */
+ void __iomem *vbase; /* Chip select base virtual address */
+ phys_addr_t pbase; /* Chip select physical address */
+};
+
+static struct fsl_ifc_ctrl *ifc_ctrl;
+
+/* Generic flash bbt descriptors */
+static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
+static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
+
+static struct nand_bbt_descr bbt_main_descr = {
+ .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
+ NAND_BBT_2BIT | NAND_BBT_VERSION,
+ .offs = 2, /* 0 on 8-bit small page */
+ .len = 4,
+ .veroffs = 6,
+ .maxblocks = 4,
+ .pattern = bbt_pattern,
+};
+
+static struct nand_bbt_descr bbt_mirror_descr = {
+ .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
+ NAND_BBT_2BIT | NAND_BBT_VERSION,
+ .offs = 2, /* 0 on 8-bit small page */
+ .len = 4,
+ .veroffs = 6,
+ .maxblocks = 4,
+ .pattern = mirror_pattern,
+};
+
+static int fsl_ifc_ooblayout_ecc(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+
+ if (section)
+ return -ERANGE;
+
+ oobregion->offset = 8;
+ oobregion->length = chip->ecc.total;
+
+ return 0;
+}
+
+static int fsl_ifc_ooblayout_free(struct mtd_info *mtd, int section,
+ struct mtd_oob_region *oobregion)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+
+ if (section > 1)
+ return -ERANGE;
+
+ if (mtd->writesize == 512 && !(chip->options & NAND_BUSWIDTH_16)) {
+ if (!section) {
+ oobregion->offset = 0;
+ oobregion->length = 5;
+ } else {
+ oobregion->offset = 6;
+ oobregion->length = 2;
+ }
+
+ return 0;
+ }
+
+ if (!section) {
+ oobregion->offset = 2;
+ oobregion->length = 6;
+ } else {
+ oobregion->offset = chip->ecc.total + 8;
+ oobregion->length = mtd->oobsize - oobregion->offset;
+ }
+
+ return 0;
+}
+
+static const struct mtd_ooblayout_ops fsl_ifc_ooblayout_ops = {
+ .ecc = fsl_ifc_ooblayout_ecc,
+ .free = fsl_ifc_ooblayout_free,
+};
+
+/*
+ * Set up the IFC hardware block and page address fields, and the ifc nand
+ * structure addr field to point to the correct IFC buffer in memory
+ */
+static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct fsl_ifc_mtd *priv = chip->priv;
+ struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+ int buf_num;
+
+ if (page_addr != -1) {
+ ctrl->page = page_addr;
+ /* Program ROW0/COL0 */
+ ifc_out32(ctrl->rregs + FSL_IFC_ROW0, page_addr);
+ buf_num = page_addr & priv->bufnum_mask;
+ ctrl->addr = priv->vbase + buf_num * (mtd->writesize * 2);
+ }
+
+ ifc_out32(ctrl->rregs + FSL_IFC_COL0, (oob ? IFC_NAND_COL_MS : 0) |
+ column);
+ ctrl->index = column;
+
+ /* for OOB data point to the second half of the buffer */
+ if (oob)
+ ctrl->index += mtd->writesize;
+}
+
+/* returns nonzero if entire page is blank */
+static int check_read_ecc(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl,
+ uint32_t eccstat, uint32_t bufnum)
+{
+ return (eccstat >> ((3 - bufnum % 4) * 8)) & 15;
+}
+
+/* execute IFC NAND command and wait for it to complete */
+static void fsl_ifc_run_command(struct mtd_info *mtd)
+{
+ struct nand_chip *chip = mtd_to_nand(mtd);
+ struct fsl_ifc_mtd *priv = chip->priv;
+ struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+ uint64_t time_start;
+ uint32_t eccstat;
+ int i;
+
+ /* set the chip select for NAND Transaction */
+ ifc_out32(ctrl->rregs + FSL_IFC_NAND_CSEL,
+ priv->cs << IFC_NAND_CSEL_SHIFT);
+
+ /* start read/write seq */
+ ifc_out32(ctrl->rregs + FSL_IFC_NANDSEQ_STRT,
+ IFC_NAND_SEQ_STRT_FIR_STRT);
+
+ ctrl->nand_stat = 0;
+
+ /* wait for NAND Machine complete flag or timeout */
+ time_start = get_time_ns();
+ while (!is_timeout(time_start, IFC_TIMEOUT_MS * MSECOND)) {
+ ctrl->nand_stat = ifc_in32(ctrl->rregs + FSL_IFC_NAND_EVTER_STAT);
+
+ if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_OPC)
+ break;
+ }
+
+ ifc_out32(ctrl->rregs + FSL_IFC_NAND_EVTER_STAT, ctrl->nand_stat);
+
+ if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_FTOER)
+ pr_err("%s: Flash Time Out Error\n", __func__);
+ if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_WPER)
+ pr_err("%s: Write Protect Error\n", __func__);
+
+ ctrl->max_bitflips = 0;
+
+ if (ctrl->eccread) {
+ int errors;
+ int bufnum = ctrl->page & priv->bufnum_mask;
+ int sector_start = bufnum * chip->ecc.steps;
+ int sector_end = sector_start + chip->ecc.steps - 1;
+
+ eccstat = ifc_in32(ctrl->rregs +
+ FSL_IFC_ECCSTAT(sector_start / 4));
+
+ for (i = sector_start; i <= sector_end; i++) {
+ if ((i != sector_start) && !(i % 4)) {
+ eccstat = ifc_in32(ctrl->rregs +
+ FSL_IFC_ECCSTAT(i / 4));
+ }
+ errors = check_read_ecc(mtd, ctrl, eccstat, i);
+
+ if (errors == 15) {
+ /*
+ * Uncorrectable error.
+ * We'll check for blank pages later.
+ *
+ * We disable ECCER reporting due to erratum
+ * IFC-A002770 -- so report it now if we
+ * see an uncorrectable error in ECCSTAT.
+ */
+ ctrl->nand_stat |= IFC_NAND_EVTER_STAT_ECCER;
+ continue;
+ }
+
+ mtd->ecc_stats.corrected += errors;
+ ctrl->max_bitflips = max_t(unsigned int,
+ ctrl->max_bitflips, errors);
+ }
+
+ ctrl->eccread = 0;
+ }
+}
+
+static void
+fsl_ifc_do_read(struct nand_chip *chip, int oob, struct mtd_info *mtd)
+{
+ struct fsl_ifc_mtd *priv = chip->priv;
+ struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+
+ /* Program FIR/IFC_NAND_FCR0 for Small/Large page */
+ if (mtd->writesize > 512) {
+ ifc_out32(ctrl->rregs + FSL_IFC_FIR0,
+ (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+ (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
+ (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
+ (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) |
+ (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP4_SHIFT));
+ ifc_out32(ctrl->rregs + FSL_IFC_FIR1, 0x0);
+
+ ifc_out32(ctrl->rregs + FSL_IFC_FCR0,
+ (NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) |
+ (NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT));
+ } else {
+ ifc_out32(ctrl->rregs + FSL_IFC_FIR0,
+ (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+ (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
+ (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
+ (IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP3_SHIFT));
+ ifc_out32(ctrl->rregs + FSL_IFC_FIR1, 0);
+
+ if (oob)
+ ifc_out32(ctrl->rregs + FSL_IFC_FCR0,
+ NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT);
+ else
+ ifc_out32(ctrl->rregs + FSL_IFC_FCR0,
+ NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT);
+ }
+}
+
+/* cmdfunc send commands to the IFC NAND Machine */
+static void fsl_ifc_cmdfunc(struct nand_chip *chip, uint32_t command,
+ int column, int page_addr)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct fsl_ifc_mtd *priv = chip->priv;
+ struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+
+ /* clear the read buffer */
+ ctrl->read_bytes = 0;
+ if (command != NAND_CMD_PAGEPROG)
+ ctrl->index = 0;
+
+ switch (command) {
+ /* READ0 read the entire buffer to use hardware ECC. */
+ case NAND_CMD_READ0: {
+ ifc_out32(ctrl->rregs + FSL_IFC_NAND_BC, 0);
+ set_addr(mtd, 0, page_addr, 0);
+
+ ctrl->read_bytes = mtd->writesize + mtd->oobsize;
+ ctrl->index += column;
+
+ if (chip->ecc.mode == NAND_ECC_HW)
+ ctrl->eccread = 1;
+
+ fsl_ifc_do_read(chip, 0, mtd);
+ fsl_ifc_run_command(mtd);
+ return;
+ }
+
+ /* READOOB reads only the OOB because no ECC is performed. */
+ case NAND_CMD_READOOB:
+ ifc_out32(ctrl->rregs + FSL_IFC_NAND_BC, mtd->oobsize - column);
+
+ set_addr(mtd, column, page_addr, 1);
+
+ ctrl->read_bytes = mtd->writesize + mtd->oobsize;
+
+ fsl_ifc_do_read(chip, 1, mtd);
+ fsl_ifc_run_command(mtd);
+
+ return;
+
+ case NAND_CMD_RNDOUT:
+ if (chip->ecc.mode == NAND_ECC_HW)
+ break;
+ ifc_out32(ctrl->rregs + FSL_IFC_NAND_BC, 0);
+ set_addr(mtd, column, -1, 0);
+ ctrl->read_bytes = mtd->writesize + mtd->oobsize;
+
+ /* For write size greater than 512 */
+ ifc_out32(ctrl->rregs + FSL_IFC_FIR0,
+ (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+ (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
+ (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT));
+ ifc_out32(ctrl->rregs + FSL_IFC_FIR1, 0x0);
+
+ ifc_out32(ctrl->rregs + FSL_IFC_FCR0,
+ (NAND_CMD_RNDOUT << IFC_NAND_FCR0_CMD0_SHIFT) |
+ (NAND_CMD_RNDOUTSTART << IFC_NAND_FCR0_CMD1_SHIFT));
+
+ fsl_ifc_run_command(mtd);
+ return;
+
+ case NAND_CMD_READID:
+ case NAND_CMD_PARAM: {
+ int timing = IFC_FIR_OP_RB;
+ int len = 8;
+
+ if (command == NAND_CMD_PARAM) {
+ timing = IFC_FIR_OP_RBCD;
+ len = 256 * 3;
+ }
+
+ ifc_out32(ctrl->rregs + FSL_IFC_FIR0,
+ (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+ (IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) |
+ (timing << IFC_NAND_FIR0_OP2_SHIFT));
+ ifc_out32(ctrl->rregs + FSL_IFC_FCR0,
+ command << IFC_NAND_FCR0_CMD0_SHIFT);
+ ifc_out32(ctrl->rregs + FSL_IFC_ROW3, column);
+
+ /*
+ * although currently it's 8 bytes for READID, we always read
+ * the maximum 256 bytes(for PARAM)
+ */
+ ifc_out32(ctrl->rregs + FSL_IFC_NAND_BC, len);
+ ctrl->read_bytes = len;
+
+ set_addr(mtd, 0, 0, 0);
+ fsl_ifc_run_command(mtd);
+ return;
+ }
+
+ /* ERASE1 stores the block and page address */
+ case NAND_CMD_ERASE1:
+ set_addr(mtd, 0, page_addr, 0);
+ return;
+
+ /* ERASE2 uses the block and page address from ERASE1 */
+ case NAND_CMD_ERASE2:
+ ifc_out32(ctrl->rregs + FSL_IFC_FIR0,
+ (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+ (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP1_SHIFT) |
+ (IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP2_SHIFT));
+
+ ifc_out32(ctrl->rregs + FSL_IFC_FCR0,
+ (NAND_CMD_ERASE1 << IFC_NAND_FCR0_CMD0_SHIFT) |
+ (NAND_CMD_ERASE2 << IFC_NAND_FCR0_CMD1_SHIFT));
+
+ ifc_out32(ctrl->rregs + FSL_IFC_NAND_BC, 0);
+ ctrl->read_bytes = 0;
+ fsl_ifc_run_command(mtd);
+ return;
+
+ /* SEQIN sets up the addr buffer and all registers except the length */
+ case NAND_CMD_SEQIN: {
+ uint32_t nand_fcr0;
+
+ ctrl->column = column;
+ ctrl->oob = 0;
+
+ if (mtd->writesize > 512) {
+ nand_fcr0 =
+ (NAND_CMD_SEQIN << IFC_NAND_FCR0_CMD0_SHIFT) |
+ (NAND_CMD_STATUS << IFC_NAND_FCR0_CMD1_SHIFT) |
+ (NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD2_SHIFT);
+
+ ifc_out32(ctrl->rregs + FSL_IFC_FIR0,
+ (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+ (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
+ (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
+ (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP3_SHIFT) |
+ (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP4_SHIFT));
+ ifc_out32(ctrl->rregs + FSL_IFC_FIR1,
+ (IFC_FIR_OP_CW1 << IFC_NAND_FIR1_OP5_SHIFT) |
+ (IFC_FIR_OP_RDSTAT <<
+ IFC_NAND_FIR1_OP6_SHIFT) |
+ (IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP7_SHIFT));
+ } else {
+ nand_fcr0 = ((NAND_CMD_PAGEPROG <<
+ IFC_NAND_FCR0_CMD1_SHIFT) |
+ (NAND_CMD_SEQIN <<
+ IFC_NAND_FCR0_CMD2_SHIFT) |
+ (NAND_CMD_STATUS <<
+ IFC_NAND_FCR0_CMD3_SHIFT));
+
+ ifc_out32(ctrl->rregs + FSL_IFC_FIR0,
+ (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+ (IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP1_SHIFT) |
+ (IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP2_SHIFT) |
+ (IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP3_SHIFT) |
+ (IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP4_SHIFT));
+ ifc_out32(ctrl->rregs + FSL_IFC_FIR1,
+ (IFC_FIR_OP_CMD1 << IFC_NAND_FIR1_OP5_SHIFT) |
+ (IFC_FIR_OP_CW3 << IFC_NAND_FIR1_OP6_SHIFT) |
+ (IFC_FIR_OP_RDSTAT <<
+ IFC_NAND_FIR1_OP7_SHIFT) |
+ (IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP8_SHIFT));
+
+ if (column >= mtd->writesize)
+ nand_fcr0 |=
+ NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT;
+ else
+ nand_fcr0 |=
+ NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT;
+ }
+
+ if (column >= mtd->writesize) {
+ /* OOB area --> READOOB */
+ column -= mtd->writesize;
+ ctrl->oob = 1;
+ }
+ ifc_out32(ctrl->rregs + FSL_IFC_FCR0, nand_fcr0);
+ set_addr(mtd, column, page_addr, ctrl->oob);
+ return;
+ }
+
+ /* PAGEPROG reuses all of the setup from SEQIN and adds the length */
+ case NAND_CMD_PAGEPROG:
+ if (ctrl->oob)
+ ifc_out32(ctrl->rregs + FSL_IFC_NAND_BC,
+ ctrl->index - ctrl->column);
+ else
+ ifc_out32(ctrl->rregs + FSL_IFC_NAND_BC, 0);
+
+ fsl_ifc_run_command(mtd);
+ return;
+
+ case NAND_CMD_STATUS:
+ ifc_out32(ctrl->rregs + FSL_IFC_FIR0,
+ (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+ (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP1_SHIFT));
+ ifc_out32(ctrl->rregs + FSL_IFC_FCR0,
+ NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT);
+ ifc_out32(ctrl->rregs + FSL_IFC_NAND_BC, 1);
+ set_addr(mtd, 0, 0, 0);
+ ctrl->read_bytes = 1;
+
+ fsl_ifc_run_command(mtd);
+
+ /*
+ * The chip always seems to report that it is
+ * write-protected, even when it is not.
+ */
+ if (chip->options & NAND_BUSWIDTH_16)
+ out_be16(ctrl->addr, in_be16(ctrl->addr) |
+ NAND_STATUS_WP);
+ else
+ out_8(ctrl->addr, in_8(ctrl->addr) | NAND_STATUS_WP);
+ return;
+
+ case NAND_CMD_RESET:
+ ifc_out32(ctrl->rregs + FSL_IFC_FIR0,
+ IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT);
+ ifc_out32(ctrl->rregs + FSL_IFC_FCR0,
+ NAND_CMD_RESET << IFC_NAND_FCR0_CMD0_SHIFT);
+ fsl_ifc_run_command(mtd);
+ return;
+
+ default:
+ pr_err("%s: error, unsupported command 0x%x.\n",
+ __func__, command);
+ }
+}
+
+/* Write buf to the IFC NAND Controller Data Buffer */
+static void fsl_ifc_write_buf(struct nand_chip *chip, const uint8_t *buf, int len)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct fsl_ifc_mtd *priv = chip->priv;
+ struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+ uint32_t bufsize = mtd->writesize + mtd->oobsize;
+
+ if (len <= 0) {
+ pr_info("%s of %d bytes", __func__, len);
+ ctrl->nand_stat = 0;
+ return;
+ }
+
+ if ((uint32_t)len > bufsize - ctrl->index) {
+ pr_err("%s beyond end of buffer (%d requested, %u available)\n",
+ __func__, len, bufsize - ctrl->index);
+ len = bufsize - ctrl->index;
+ }
+
+ memcpy_toio(ctrl->addr + ctrl->index, buf, len);
+ ctrl->index += len;
+}
+
+/*
+ * read a byte from either the IFC hardware buffer if it has any data left
+ * otherwise issue a command to read a single byte.
+ */
+static uint8_t fsl_ifc_read_byte(struct nand_chip *chip)
+{
+ struct fsl_ifc_mtd *priv = chip->priv;
+ struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+ uint32_t offset;
+
+ /*
+ * If there are still bytes in the IFC buffer, then use the
+ * next byte.
+ */
+ if (ctrl->index < ctrl->read_bytes) {
+ offset = ctrl->index++;
+ return in_8(ctrl->addr + offset);
+ }
+
+ return ERR_BYTE;
+}
+
+/*
+ * Read two bytes from the IFC hardware buffer
+ * read function for 16-bit buswith
+ */
+static uint8_t fsl_ifc_read_byte16(struct nand_chip *chip)
+{
+ struct fsl_ifc_mtd *priv = chip->priv;
+ struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+ uint16_t data;
+
+ /*
+ * If there are still bytes in the IFC buffer, then use the
+ * next byte.
+ */
+ if (ctrl->index < ctrl->read_bytes) {
+ data = ifc_in16(ctrl->addr + ctrl->index);
+ ctrl->index += 2;
+ return (uint8_t)data;
+ }
+
+ return ERR_BYTE;
+}
+
+/* Read from the IFC Controller Data Buffer */
+static void fsl_ifc_read_buf(struct nand_chip *chip, uint8_t *buf, int len)
+{
+ struct fsl_ifc_mtd *priv = chip->priv;
+ struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+ int avail;
+
+ if (len < 0)
+ return;
+
+ avail = min((uint32_t)len, ctrl->read_bytes - ctrl->index);
+ memcpy_fromio(buf, ctrl->addr + ctrl->index, avail);
+
+ ctrl->index += avail;
+
+ if (len > avail)
+ pr_err("%s beyond end of buffer (%d requested, %d available)\n",
+ __func__, len, avail);
+}
+
+/* This function is called after Program and Erase Operations to
+ * check for success or failure.
+ */
+static int fsl_ifc_wait(struct nand_chip *chip)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct fsl_ifc_mtd *priv = chip->priv;
+ struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+ uint32_t nand_fsr;
+ int status;
+
+ /* Use READ_STATUS command, but wait for the device to be ready */
+ ifc_out32(ctrl->rregs + FSL_IFC_FIR0,
+ (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+ (IFC_FIR_OP_RDSTAT << IFC_NAND_FIR0_OP1_SHIFT));
+ ifc_out32(ctrl->rregs + FSL_IFC_FCR0, NAND_CMD_STATUS <<
+ IFC_NAND_FCR0_CMD0_SHIFT);
+ ifc_out32(ctrl->rregs + FSL_IFC_NAND_BC, 1);
+ set_addr(mtd, 0, 0, 0);
+ ctrl->read_bytes = 1;
+
+ fsl_ifc_run_command(mtd);
+
+ nand_fsr = ifc_in32(ctrl->rregs + FSL_IFC_NAND_FSR);
+ status = nand_fsr >> 24;
+
+ /* Chip sometimes reporting write protect even when it's not */
+ return status | NAND_STATUS_WP;
+}
+
+/*
+ * The controller does not check for bitflips in erased pages,
+ * therefore software must check instead.
+ */
+static int
+check_erased_page(struct nand_chip *chip, u8 *buf, struct mtd_info *mtd)
+{
+ u8 *ecc = chip->oob_poi;
+ const int ecc_size = chip->ecc.bytes;
+ const int pkt_size = chip->ecc.size;
+ int i, res, bitflips = 0;
+ struct mtd_oob_region oobregion = { };
+
+
+ mtd_ooblayout_ecc(mtd, 0, &oobregion);
+ ecc += oobregion.offset;
+ for (i = 0; i < chip->ecc.steps; i++) {
+ res = nand_check_erased_ecc_chunk(buf, pkt_size, ecc, ecc_size,
+ NULL, 0, chip->ecc.strength);
+
+ if (res < 0) {
+ pr_err("fsl-ifc: NAND Flash ECC Uncorrectable Error\n");
+ mtd->ecc_stats.failed++;
+ } else if (res > 0) {
+ mtd->ecc_stats.corrected += res;
+ }
+ bitflips = max(res, bitflips);
+ buf += pkt_size;
+ ecc += ecc_size;
+ }
+
+ return bitflips;
+}
+
+static int fsl_ifc_read_page(struct nand_chip *chip, uint8_t *buf,
+ int oob_required, int page)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+ struct fsl_ifc_mtd *priv = chip->priv;
+ struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+
+ nand_read_page_op(chip, page, 0, buf, mtd->writesize);
+ /*fsl_ifc_read_buf(chip, buf, mtd->writesize); */
+ if (oob_required)
+ fsl_ifc_read_buf(chip, chip->oob_poi, mtd->oobsize);
+
+ if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_ECCER) {
+ if (!oob_required)
+ fsl_ifc_read_buf(chip, chip->oob_poi, mtd->oobsize);
+
+ return check_erased_page(chip, buf, mtd);
+ }
+
+ if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC)
+ mtd->ecc_stats.failed++;
+
+ return ctrl->max_bitflips;
+}
+
+/*
+ * ECC will be calculated automatically, and errors will be detected in
+ * waitfunc.
+ */
+static int fsl_ifc_write_page(struct nand_chip *chip, const uint8_t *buf,
+ int oob_required, int page)
+{
+ struct mtd_info *mtd = nand_to_mtd(chip);
+
+ nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
+ fsl_ifc_write_buf(chip, chip->oob_poi, mtd->oobsize);
+
+ return nand_prog_page_end_op(chip);
+}
+
+static int match_bank(struct fsl_ifc_ctrl *ctrl, int bank, phys_addr_t addr)
+{
+ u32 cspr = get_ifc_cspr(ctrl->gregs, bank);
+
+ if (!(cspr & CSPR_V))
+ return 0;
+ if ((cspr & CSPR_MSEL) != CSPR_MSEL_NAND)
+ return 0;
+
+ return (cspr & CSPR_BA) == (addr & CSPR_BA);
+}
+
+static int fsl_ifc_ctrl_init(void)
+{
+ struct fsl_ifc_ctrl *ctrl;
+ struct device_node *np;
+
+ np = of_find_compatible_node(NULL, NULL, "fsl,ifc");
+ if (!np)
+ return -EINVAL;
+
+ ifc_ctrl = kzalloc(sizeof(*ifc_ctrl), GFP_KERNEL);
+ if (!ifc_ctrl)
+ return -ENOMEM;
+
+ ctrl = ifc_ctrl;
+ ctrl->read_bytes = 0;
+ ctrl->index = 0;
+ ctrl->addr = NULL;
+
+ ctrl->gregs = of_iomap(np, 0);
+
+ ctrl->version = ifc_in32(ctrl->gregs + FSL_IFC_REV);
+ if (ctrl->version >= FSL_IFC_V2_0_0)
+ ctrl->rregs = ctrl->gregs + 0x10000;
+ else
+ ctrl->rregs = ctrl->gregs + 0x1000;
+
+ /* clear event registers */
+ ifc_out32(ctrl->rregs + FSL_IFC_NAND_EVTER_STAT, ~0U);
+ ifc_out32(ctrl->rregs + FSL_IFC_PGRDCMPL_EVT_STAT, ~0U);
+
+ /* Enable error and event for any detected errors */
+ ifc_out32(ctrl->rregs + FSL_IFC_EVTER_EN,
+ IFC_NAND_EVTER_EN_OPC_EN |
+ IFC_NAND_EVTER_EN_PGRDCMPL_EN |
+ IFC_NAND_EVTER_EN_FTOER_EN |
+ IFC_NAND_EVTER_EN_WPER_EN);
+
+ ifc_out32(ctrl->rregs + FSL_IFC_NCFGR, 0x0);
+
+ return 0;
+}
+
+static void fsl_ifc_select_chip(struct nand_chip *chip, int cs)
+{
+}
+
+static int fsl_ifc_sram_init(struct fsl_ifc_mtd *priv, uint32_t ver)
+{
+ struct fsl_ifc_ctrl *ctrl = priv->ctrl;
+ uint32_t cs = 0, csor = 0, csor_8k = 0, csor_ext = 0;
+ uint32_t ncfgr = 0;
+ uint32_t time_start;
+
+ if (ctrl->version > FSL_IFC_V1_1_0) {
+ ncfgr = ifc_in32(ctrl->rregs + FSL_IFC_NCFGR);
+ ifc_out32(ctrl->rregs + FSL_IFC_NCFGR,
+ ncfgr | IFC_NAND_SRAM_INIT_EN);
+
+ /* wait for SRAM_INIT bit to be clear or timeout */
+ time_start = get_time_ns();
+ while (!is_timeout(time_start, IFC_TIMEOUT_MS * MSECOND)) {
+ ifc_ctrl->nand_stat =
+ ifc_in32(ctrl->rregs + FSL_IFC_NAND_EVTER_STAT);
+
+ if (!(ifc_ctrl->nand_stat & IFC_NAND_SRAM_INIT_EN))
+ return 0;
+ }
+ pr_err("fsl-ifc: Failed to Initialise SRAM\n");
+ return -EIO;
+ }
+
+ cs = priv->cs;
+ /* Save CSOR and CSOR_ext */
+ csor = get_ifc_csor(ctrl->gregs, cs);
+ csor_ext = get_ifc_csor_ext(ctrl->gregs, cs);
+
+ /* change PageSize 8K and SpareSize 1K*/
+ csor_8k = (csor & ~(CSOR_NAND_PGS_MASK)) | 0x0018C000;
+ set_ifc_csor(ctrl->gregs, cs, csor_8k);
+ set_ifc_csor_ext(ctrl->gregs, cs, 0x0000400);
+
+ /* READID */
+ ifc_out32(ctrl->rregs + FSL_IFC_FIR0,
+ (IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
+ (IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) |
+ (IFC_FIR_OP_RB << IFC_NAND_FIR0_OP2_SHIFT));
+ ifc_out32(ctrl->rregs + FSL_IFC_FCR0,
+ NAND_CMD_READID << IFC_NAND_FCR0_CMD0_SHIFT);
+ ifc_out32(ctrl->rregs + FSL_IFC_ROW3, 0x0);
+
+ ifc_out32(ctrl->rregs + FSL_IFC_NAND_BC, 0x0);
+
+ /* Program ROW0/COL0 */
+ ifc_out32(ctrl->rregs + FSL_IFC_ROW0, 0x0);
+ ifc_out32(ctrl->rregs + FSL_IFC_COL0, 0x0);
+
+ /* set the chip select for NAND Transaction */
+ ifc_out32(ctrl->rregs + FSL_IFC_NAND_CSEL,
+ priv->cs << IFC_NAND_CSEL_SHIFT);
+
+ /* start read seq */
+ ifc_out32(ctrl->rregs + FSL_IFC_NANDSEQ_STRT,
+ IFC_NAND_SEQ_STRT_FIR_STRT);
+
+ time_start = get_time_ns();
+ while (!is_timeout(time_start, IFC_TIMEOUT_MS * MSECOND)) {
+ ifc_ctrl->nand_stat =
+ ifc_in32(ctrl->rregs + FSL_IFC_NAND_EVTER_STAT);
+
+ if (ifc_ctrl->nand_stat & IFC_NAND_EVTER_STAT_OPC)
+ break;
+ }
+
+ if (ifc_ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC) {
+ pr_err("fsl-ifc: Failed to Initialise SRAM\n");
+ return -EIO;
+ }
+
+ ifc_out32(ctrl->rregs + FSL_IFC_NAND_EVTER_STAT, ifc_ctrl->nand_stat);
+
+ /* Restore CSOR and CSOR_ext */
+ set_ifc_csor(ctrl->gregs, priv->cs, csor);
+ set_ifc_csor_ext(ctrl->gregs, priv->cs, csor_ext);
+
+ return 0;
+}
+
+static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv)
+{
+ struct fsl_ifc_ctrl *ctrl;
+ struct nand_chip *nand = &priv->chip;
+ struct mtd_info *mtd = nand_to_mtd(&priv->chip);
+ uint32_t cspr = 0, csor = 0;
+ int ret = 0;
+
+ if (!ifc_ctrl) {
+ ret = fsl_ifc_ctrl_init();
+ if (ret)
+ return ret;
+ }
+ ctrl = priv->ctrl = ifc_ctrl;
+
+ if (priv->dev->device_node) {
+ int bank, banks;
+
+ /* find which chip select it is connected to */
+ banks = (ctrl->version == FSL_IFC_V1_1_0) ? 4 : 8;
+ for (bank = 0; bank < banks; bank++) {
+ if (match_bank(ifc_ctrl, bank, priv->pbase))
+ break;
+ }
+ priv->cs = bank;
+ if (bank >= banks) {
+ pr_err("%s: address did not match any chip selects\n",
+ __func__);
+ return -ENODEV;
+ }
+ }
+
+ /*mtd->priv = nand; */
+ mtd->dev.parent = priv->dev;
+
+ /*
+ * Fill in nand_chip structure
+ * set up function call table
+ */
+ nand->legacy.write_buf = fsl_ifc_write_buf;
+ nand->legacy.read_buf = fsl_ifc_read_buf;
+ nand->legacy.select_chip = fsl_ifc_select_chip;
+ nand->legacy.cmdfunc = fsl_ifc_cmdfunc;
+ nand->legacy.waitfunc = fsl_ifc_wait;
+
+ /* set up nand options */
+ nand->bbt_td = &bbt_main_descr;
+ nand->bbt_md = &bbt_mirror_descr;
+
+ /* set up nand options */
+ nand->options = NAND_NO_SUBPAGE_WRITE;
+ nand->bbt_options = NAND_BBT_USE_FLASH;
+
+ cspr = get_ifc_cspr(ctrl->gregs, priv->cs);
+ csor = get_ifc_csor(ctrl->gregs, priv->cs);
+
+ if (cspr & CSPR_PORT_SIZE_16) {
+ nand->legacy.read_byte = fsl_ifc_read_byte16;
+ nand->options |= NAND_BUSWIDTH_16;
+ } else {
+ nand->legacy.read_byte = fsl_ifc_read_byte;
+ }
+
+ nand->controller = &ifc_ctrl->controller;
+ nand->priv = priv;
+
+ nand->ecc.read_page = fsl_ifc_read_page;
+ nand->ecc.write_page = fsl_ifc_write_page;
+
+ /* Hardware generates ECC per 512 Bytes */
+ nand->ecc.size = 512;
+ nand->ecc.bytes = 8;
+
+ nand->legacy.chip_delay = 30;
+
+ switch (csor & CSOR_NAND_PGS_MASK) {
+ case CSOR_NAND_PGS_512:
+ if (!(nand->options & NAND_BUSWIDTH_16)) {
+ /* Avoid conflict with bad block marker */
+ bbt_main_descr.offs = 0;
+ bbt_mirror_descr.offs = 0;
+ }
+
+ nand->ecc.strength = 4;
+ priv->bufnum_mask = 15;
+ break;
+
+ case CSOR_NAND_PGS_2K:
+ nand->ecc.strength = 4;
+ priv->bufnum_mask = 3;
+ break;
+
+ case CSOR_NAND_PGS_4K:
+ if ((csor & CSOR_NAND_ECC_MODE_MASK) ==
+ CSOR_NAND_ECC_MODE_4) {
+ nand->ecc.strength = 4;
+ } else {
+ nand->ecc.strength = 8;
+ nand->ecc.bytes = 16;
+ }
+
+ priv->bufnum_mask = 1;
+ break;
+
+ case CSOR_NAND_PGS_8K:
+ if ((csor & CSOR_NAND_ECC_MODE_MASK) ==
+ CSOR_NAND_ECC_MODE_4) {
+ nand->ecc.strength = 4;
+ } else {
+ nand->ecc.strength = 8;
+ nand->ecc.bytes = 16;
+ }
+
+ priv->bufnum_mask = 0;
+ break;
+
+
+ default:
+ pr_err("ifc nand: bad csor %#x: bad page size\n", csor);
+ return -ENODEV;
+ }
+
+ /* Must also set CSOR_NAND_ECC_ENC_EN if DEC_EN set */
+ if (csor & CSOR_NAND_ECC_DEC_EN) {
+ nand->ecc.mode = NAND_ECC_HW;
+ mtd_set_ooblayout(mtd, &fsl_ifc_ooblayout_ops);
+ } else {
+ nand->ecc.mode = NAND_ECC_SOFT;
+ nand->ecc.algo = NAND_ECC_HAMMING;
+ }
+
+ if (ctrl->version >= FSL_IFC_V1_1_0) {
+ ret = fsl_ifc_sram_init(priv, ctrl->version);
+ if (ret)
+ return ret;
+ }
+
+ if (ctrl->version >= FSL_IFC_V2_0_0)
+ priv->bufnum_mask = (priv->bufnum_mask * 2) + 1;
+
+ return 0;
+}
+
+static int fsl_ifc_nand_probe(struct device_d *dev)
+{
+ struct fsl_ifc_mtd *priv;
+ struct resource *iores;
+ struct mtd_info *mtd;
+ int ret = 0;
+
+ priv = kzalloc(sizeof(*priv), GFP_KERNEL);
+ if (!priv)
+ return -ENOMEM;
+
+ priv->dev = dev;
+ iores = dev_request_mem_resource(dev, 0);
+ if (IS_ERR(iores)) {
+ ret = -ENOMEM;
+ goto bailout;
+ }
+ priv->pbase = iores->start;
+ priv->vbase = IOMEM(iores->start);
+
+ if (fsl_ifc_chip_init(priv)) {
+ ret = -ENOMEM;
+ goto bailout;
+ }
+
+ ret = nand_scan_ident(&priv->chip, 1, NULL);
+ if (ret)
+ goto bailout;
+
+ ret = nand_scan_tail(&priv->chip);
+ if (ret)
+ goto bailout;
+
+ mtd = nand_to_mtd(&priv->chip);
+ return add_mtd_nand_device(mtd, "nand");
+bailout:
+ kfree(priv);
+ return ret;
+}
+
+static __maybe_unused struct of_device_id fsl_nand_compatible[] = {
+ {
+ .compatible = "fsl,ifc-nand",
+ }, {
+ }
+};
+
+static struct driver_d fsl_ifc_driver = {
+ .name = "fsl_nand",
+ .probe = fsl_ifc_nand_probe,
+ .of_compatible = DRV_OF_COMPAT(fsl_nand_compatible),
+};
+device_platform_driver(fsl_ifc_driver);
+
+MODULE_AUTHOR("Freescale Semiconductor, Inc.");
+MODULE_DESCRIPTION("FSL IFC NAND driver");
+MODULE_LICENSE("GPL");
diff --git a/include/linux/fsl_ifc.h b/include/linux/fsl_ifc.h
new file mode 100644
index 0000000000..2ff0626357
--- /dev/null
+++ b/include/linux/fsl_ifc.h
@@ -0,0 +1,305 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+/*
+ * Copyright 2010-2011 Freescale Semiconductor, Inc.
+ * Author: Dipen Dudhat <dipen.dudhat at freescale.com>
+ *
+ */
+
+#ifndef __FSL_IFC_H
+#define __FSL_IFC_H
+
+#include <linux/compiler.h>
+#include <linux/types.h>
+#include <linux/log2.h>
+
+/* Big-Endian */
+#define ifc_in32(a) ioread32be(a)
+#define ifc_out32(a, v) iowrite32be(v, a)
+#define ifc_in16(a) ioread16be(a)
+#define ifc_out16(a, v) iowrite16be(v, a)
+
+/*
+ * CSPR - Chip Select Property Register
+ */
+#define CSPR_BA 0xFFFF0000
+#define CSPR_BA_SHIFT 16
+#define CSPR_PORT_SIZE 0x00000180
+#define CSPR_PORT_SIZE_SHIFT 7
+#define CSPR_PORT_SIZE_8 0x00000080
+#define CSPR_PORT_SIZE_16 0x00000100
+#define CSPR_PORT_SIZE_32 0x00000180
+/* Write Protect */
+#define CSPR_WP 0x00000040
+#define CSPR_WP_SHIFT 6
+#define CSPR_MSEL 0x00000006
+#define CSPR_MSEL_SHIFT 1
+#define CSPR_MSEL_NOR 0x00000000
+#define CSPR_MSEL_NAND 0x00000002
+#define CSPR_MSEL_GPCM 0x00000004
+#define CSPR_V 0x00000001
+#define CSPR_V_SHIFT 0
+
+/* Convert an address into the right format for the CSPR Registers */
+#define CSPR_PHYS_ADDR(x) (((uint64_t)x) & 0xffff0000)
+
+/*
+ * Address Mask Register
+ */
+#define IFC_AMASK_MASK 0xFFFF0000
+#define IFC_AMASK_SHIFT 16
+#define IFC_AMASK(n) (IFC_AMASK_MASK << \
+ (ilog2(n) - IFC_AMASK_SHIFT))
+
+/*
+ * Chip Select Option Register IFC_NAND Machine
+ */
+#define CSOR_NAND_ECC_ENC_EN 0x80000000
+#define CSOR_NAND_ECC_MODE_MASK 0x30000000
+/* 4 bit correction per 520 Byte sector */
+#define CSOR_NAND_ECC_MODE_4 0x00000000
+/* 8 bit correction per 528 Byte sector */
+#define CSOR_NAND_ECC_MODE_8 0x10000000
+#define CSOR_NAND_ECC_DEC_EN 0x04000000
+/* Row Address Length */
+#define CSOR_NAND_RAL_MASK 0x01800000
+#define CSOR_NAND_RAL_SHIFT 20
+#define CSOR_NAND_RAL_1 0x00000000
+#define CSOR_NAND_RAL_2 0x00800000
+#define CSOR_NAND_RAL_3 0x01000000
+#define CSOR_NAND_RAL_4 0x01800000
+/* Page Size 512b, 2k, 4k */
+#define CSOR_NAND_PGS_MASK 0x00180000
+#define CSOR_NAND_PGS_SHIFT 16
+#define CSOR_NAND_PGS_512 0x00000000
+#define CSOR_NAND_PGS_2K 0x00080000
+#define CSOR_NAND_PGS_4K 0x00100000
+#define CSOR_NAND_PGS_8K 0x00180000
+/* Spare region Size */
+#define CSOR_NAND_SPRZ_MASK 0x0000E000
+#define CSOR_NAND_SPRZ_SHIFT 13
+#define CSOR_NAND_SPRZ_16 0x00000000
+#define CSOR_NAND_SPRZ_64 0x00002000
+#define CSOR_NAND_SPRZ_128 0x00004000
+#define CSOR_NAND_SPRZ_210 0x00006000
+#define CSOR_NAND_SPRZ_218 0x00008000
+#define CSOR_NAND_SPRZ_224 0x0000A000
+#define CSOR_NAND_SPRZ_CSOR_EXT 0x0000C000
+/* Pages Per Block */
+#define CSOR_NAND_PB_MASK 0x00000700
+#define CSOR_NAND_PB_SHIFT 8
+#define CSOR_NAND_PB(n) ((ilog2(n) - 5) << CSOR_NAND_PB_SHIFT)
+/* Time for Read Enable High to Output High Impedance */
+#define CSOR_NAND_TRHZ_MASK 0x0000001C
+#define CSOR_NAND_TRHZ_SHIFT 2
+#define CSOR_NAND_TRHZ_20 0x00000000
+#define CSOR_NAND_TRHZ_40 0x00000004
+#define CSOR_NAND_TRHZ_60 0x00000008
+#define CSOR_NAND_TRHZ_80 0x0000000C
+#define CSOR_NAND_TRHZ_100 0x00000010
+/* Buffer control disable */
+#define CSOR_NAND_BCTLD 0x00000001
+
+/*
+ * Chip Select Option Register - NOR Flash Mode
+ */
+/* Enable Address shift Mode */
+#define CSOR_NOR_ADM_SHFT_MODE_EN 0x80000000
+/* Page Read Enable from NOR device */
+#define CSOR_NOR_PGRD_EN 0x10000000
+/* AVD Toggle Enable during Burst Program */
+#define CSOR_NOR_AVD_TGL_PGM_EN 0x01000000
+/* Address Data Multiplexing Shift */
+#define CSOR_NOR_ADM_MASK 0x0003E000
+#define CSOR_NOR_ADM_SHIFT_SHIFT 13
+#define CSOR_NOR_ADM_SHIFT(n) ((n) << CSOR_NOR_ADM_SHIFT_SHIFT)
+/* Type of the NOR device hooked */
+#define CSOR_NOR_NOR_MODE_ASYNC_NOR 0x00000000
+#define CSOR_NOR_NOR_MODE_AVD_NOR 0x00000020
+/* Time for Read Enable High to Output High Impedance */
+#define CSOR_NOR_TRHZ_MASK 0x0000001C
+#define CSOR_NOR_TRHZ_SHIFT 2
+#define CSOR_NOR_TRHZ_20 0x00000000
+#define CSOR_NOR_TRHZ_40 0x00000004
+#define CSOR_NOR_TRHZ_60 0x00000008
+#define CSOR_NOR_TRHZ_80 0x0000000C
+#define CSOR_NOR_TRHZ_100 0x00000010
+/* Buffer control disable */
+#define CSOR_NOR_BCTLD 0x00000001
+
+/*
+ * Flash Timing Registers (FTIM0 - FTIM2_CSn)
+ */
+/*
+ * FTIM0 - NAND Flash Mode
+ */
+#define FTIM0_NAND 0x7EFF3F3F
+#define FTIM0_NAND_TCCST_SHIFT 25
+#define FTIM0_NAND_TCCST(n) ((n) << FTIM0_NAND_TCCST_SHIFT)
+#define FTIM0_NAND_TWP_SHIFT 16
+#define FTIM0_NAND_TWP(n) ((n) << FTIM0_NAND_TWP_SHIFT)
+#define FTIM0_NAND_TWCHT_SHIFT 8
+#define FTIM0_NAND_TWCHT(n) ((n) << FTIM0_NAND_TWCHT_SHIFT)
+#define FTIM0_NAND_TWH_SHIFT 0
+#define FTIM0_NAND_TWH(n) ((n) << FTIM0_NAND_TWH_SHIFT)
+/*
+ * FTIM1 - NAND Flash Mode
+ */
+#define FTIM1_NAND 0xFFFF3FFF
+#define FTIM1_NAND_TADLE_SHIFT 24
+#define FTIM1_NAND_TADLE(n) ((n) << FTIM1_NAND_TADLE_SHIFT)
+#define FTIM1_NAND_TWBE_SHIFT 16
+#define FTIM1_NAND_TWBE(n) ((n) << FTIM1_NAND_TWBE_SHIFT)
+#define FTIM1_NAND_TRR_SHIFT 8
+#define FTIM1_NAND_TRR(n) ((n) << FTIM1_NAND_TRR_SHIFT)
+#define FTIM1_NAND_TRP_SHIFT 0
+#define FTIM1_NAND_TRP(n) ((n) << FTIM1_NAND_TRP_SHIFT)
+/*
+ * FTIM2 - NAND Flash Mode
+ */
+#define FTIM2_NAND 0x1FE1F8FF
+#define FTIM2_NAND_TRAD_SHIFT 21
+#define FTIM2_NAND_TRAD(n) ((n) << FTIM2_NAND_TRAD_SHIFT)
+#define FTIM2_NAND_TREH_SHIFT 11
+#define FTIM2_NAND_TREH(n) ((n) << FTIM2_NAND_TREH_SHIFT)
+#define FTIM2_NAND_TWHRE_SHIFT 0
+#define FTIM2_NAND_TWHRE(n) ((n) << FTIM2_NAND_TWHRE_SHIFT)
+/*
+ * FTIM0 - NOR Flash Mode
+ */
+#define FTIM0_NOR 0xF03F3F3F
+#define FTIM0_NOR_TACSE_SHIFT 28
+#define FTIM0_NOR_TACSE(n) ((n) << FTIM0_NOR_TACSE_SHIFT)
+#define FTIM0_NOR_TEADC_SHIFT 16
+#define FTIM0_NOR_TEADC(n) ((n) << FTIM0_NOR_TEADC_SHIFT)
+#define FTIM0_NOR_TAVDS_SHIFT 8
+#define FTIM0_NOR_TAVDS(n) ((n) << FTIM0_NOR_TAVDS_SHIFT)
+#define FTIM0_NOR_TEAHC_SHIFT 0
+#define FTIM0_NOR_TEAHC(n) ((n) << FTIM0_NOR_TEAHC_SHIFT)
+/*
+ * FTIM1 - NOR Flash Mode
+ */
+#define FTIM1_NOR 0xFF003F3F
+#define FTIM1_NOR_TACO_SHIFT 24
+#define FTIM1_NOR_TACO(n) ((n) << FTIM1_NOR_TACO_SHIFT)
+#define FTIM1_NOR_TRAD_NOR_SHIFT 8
+#define FTIM1_NOR_TRAD_NOR(n) ((n) << FTIM1_NOR_TRAD_NOR_SHIFT)
+#define FTIM1_NOR_TSEQRAD_NOR_SHIFT 0
+#define FTIM1_NOR_TSEQRAD_NOR(n) ((n) << FTIM1_NOR_TSEQRAD_NOR_SHIFT)
+/*
+ * FTIM2 - NOR Flash Mode
+ */
+#define FTIM2_NOR 0x0F3CFCFF
+#define FTIM2_NOR_TCS_SHIFT 24
+#define FTIM2_NOR_TCS(n) ((n) << FTIM2_NOR_TCS_SHIFT)
+#define FTIM2_NOR_TCH_SHIFT 18
+#define FTIM2_NOR_TCH(n) ((n) << FTIM2_NOR_TCH_SHIFT)
+#define FTIM2_NOR_TWPH_SHIFT 10
+#define FTIM2_NOR_TWPH(n) ((n) << FTIM2_NOR_TWPH_SHIFT)
+#define FTIM2_NOR_TWP_SHIFT 0
+#define FTIM2_NOR_TWP(n) ((n) << FTIM2_NOR_TWP_SHIFT)
+
+/*
+ * FTIM0 - Normal GPCM Mode
+ */
+#define FTIM0_GPCM 0xF03F3F3F
+#define FTIM0_GPCM_TACSE_SHIFT 28
+#define FTIM0_GPCM_TACSE(n) ((n) << FTIM0_GPCM_TACSE_SHIFT)
+#define FTIM0_GPCM_TEADC_SHIFT 16
+#define FTIM0_GPCM_TEADC(n) ((n) << FTIM0_GPCM_TEADC_SHIFT)
+#define FTIM0_GPCM_TAVDS_SHIFT 8
+#define FTIM0_GPCM_TAVDS(n) ((n) << FTIM0_GPCM_TAVDS_SHIFT)
+#define FTIM0_GPCM_TEAHC_SHIFT 0
+#define FTIM0_GPCM_TEAHC(n) ((n) << FTIM0_GPCM_TEAHC_SHIFT)
+/*
+ * FTIM1 - Normal GPCM Mode
+ */
+#define FTIM1_GPCM 0xFF003F00
+#define FTIM1_GPCM_TACO_SHIFT 24
+#define FTIM1_GPCM_TACO(n) ((n) << FTIM1_GPCM_TACO_SHIFT)
+#define FTIM1_GPCM_TRAD_SHIFT 8
+#define FTIM1_GPCM_TRAD(n) ((n) << FTIM1_GPCM_TRAD_SHIFT)
+/*
+ * FTIM2 - Normal GPCM Mode
+ */
+#define FTIM2_GPCM 0x0F3C00FF
+#define FTIM2_GPCM_TCS_SHIFT 24
+#define FTIM2_GPCM_TCS(n) ((n) << FTIM2_GPCM_TCS_SHIFT)
+#define FTIM2_GPCM_TCH_SHIFT 18
+#define FTIM2_GPCM_TCH(n) ((n) << FTIM2_GPCM_TCH_SHIFT)
+#define FTIM2_GPCM_TWP_SHIFT 0
+#define FTIM2_GPCM_TWP(n) ((n) << FTIM2_GPCM_TWP_SHIFT)
+
+/*
+ * General Control Register (GCR)
+ */
+#define IFC_GCR_MASK 0x8000F800
+/* reset all IFC hardware */
+#define IFC_GCR_SOFT_RST_ALL 0x80000000
+/* Turnaroud Time of external buffer */
+#define IFC_GCR_TBCTL_TRN_TIME 0x0000F800
+#define IFC_GCR_TBCTL_TRN_TIME_SHIFT 11
+
+/*
+ * Clock Control Register (CCR)
+ */
+#define IFC_CCR_MASK 0x0F0F8800
+/* Clock division ratio */
+#define IFC_CCR_CLK_DIV_MASK 0x0F000000
+#define IFC_CCR_CLK_DIV_SHIFT 24
+#define IFC_CCR_CLK_DIV(n) ((n-1) << IFC_CCR_CLK_DIV_SHIFT)
+/* IFC Clock Delay */
+#define IFC_CCR_CLK_DLY_MASK 0x000F0000
+#define IFC_CCR_CLK_DLY_SHIFT 16
+#define IFC_CCR_CLK_DLY(n) ((n) << IFC_CCR_CLK_DLY_SHIFT)
+
+#ifndef __ASSEMBLY__
+#include <asm/io.h>
+
+#define FSL_IFC_CSPRX(i) (0x10 + ((i) * 0xc))
+#define FSL_IFC_CSORX(i) (0x130 + ((i) * 0xc))
+#define FSL_IFC_CSORX_EXT(i) (0x134 + ((i) * 0xc))
+#define FSL_IFC_AMASKX(i) (0xa0 + ((i) * 0xc))
+#define FSL_IFC_CSX_FTIMY(i, j) ((0x1c0 + ((i) * 0x30)) + ((j) * 4))
+
+#define get_ifc_cspr(base, i) (ifc_in32(base + FSL_IFC_CSPRX(i)))
+#define get_ifc_csor(base, i) (ifc_in32(base + FSL_IFC_CSORX(i)))
+#define get_ifc_csor_ext(base, i) (ifc_in32(base + FSL_IFC_CSORX_EXT(i)))
+#define get_ifc_amask(base, i) (ifc_in32(base + FSL_IFC_AMASKX(i)))
+#define get_ifc_ftim(base, i, j) (ifc_in32(base + FSL_IFC_CSX_FTIMY(i, j)))
+
+#define set_ifc_cspr(base, i, v) (ifc_out32(base + FSL_IFC_CSPRX(i), v))
+#define set_ifc_csor(base, i, v) (ifc_out32(base + FSL_IFC_CSORX(i), v))
+#define set_ifc_csor_ext(base, i, v) (ifc_out32(base + FSL_IFC_CSORX_EXT(i),\
+ v))
+#define set_ifc_amask(base, i, v) (ifc_out32(base + FSL_IFC_AMASKX(i), v))
+#define set_ifc_ftim(base, i, j, v) \
+ (ifc_out32(base + FSL_IFC_CSX_FTIMY(i, j), v))
+
+#define FSL_IFC_GCR_OFFSET 0x40c
+#define FSL_IFC_CCR_OFFSET 0x44c
+
+enum ifc_chip_sel {
+ IFC_CS0,
+ IFC_CS1,
+ IFC_CS2,
+ IFC_CS3,
+ IFC_CS4,
+ IFC_CS5,
+ IFC_CS6,
+ IFC_CS7,
+};
+
+enum ifc_ftims {
+ IFC_FTIM0,
+ IFC_FTIM1,
+ IFC_FTIM2,
+ IFC_FTIM3,
+};
+
+#ifdef CONFIG_FSL_ERRATUM_IFC_A002769
+#undef CSPR_MSEL_NOR
+#define CSPR_MSEL_NOR CSPR_MSEL_GPCM
+#endif
+
+#endif /* __ASSEMBLY__ */
+#endif /* __FSL_IFC_H */
--
2.27.0
More information about the barebox
mailing list