[PATCH 2/4] mtd nand_denali: Add denali nand driver

Enrico Jorns ejo at pengutronix.de
Mon Sep 21 07:04:42 PDT 2015


The driver is based on the denali driver from the linux kernel

Signed-off-by: Enrico Jorns <ejo at pengutronix.de>
---
 drivers/mtd/nand/Kconfig          |   26 +
 drivers/mtd/nand/Makefile         |    3 +
 drivers/mtd/nand/denali.h         |  499 ++++++++++++
 drivers/mtd/nand/nand_denali.c    | 1559 +++++++++++++++++++++++++++++++++++++
 drivers/mtd/nand/nand_denali_dt.c |  101 +++
 5 files changed, 2188 insertions(+)
 create mode 100644 drivers/mtd/nand/denali.h
 create mode 100644 drivers/mtd/nand/nand_denali.c
 create mode 100644 drivers/mtd/nand/nand_denali_dt.c

diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig
index a75540b..ff26584 100644
--- a/drivers/mtd/nand/Kconfig
+++ b/drivers/mtd/nand/Kconfig
@@ -140,4 +140,30 @@ config MTD_NAND_NOMADIK
 	help
 	  Driver for the NAND flash controller on the Nomadik, with ECC.
 
+config MTD_NAND_DENALI
+        tristate "Support Denali NAND controller"
+        depends on HAS_DMA
+        help
+          Enable support for the Denali NAND controller.  This should be
+          combined with either the PCI or platform drivers to provide device
+          registration.
+
+config MTD_NAND_DENALI_DT
+        tristate "Support Denali NAND controller as a DT device"
+        depends on HAVE_CLK && MTD_NAND_DENALI
+        help
+          Enable the driver for NAND flash on platforms using a Denali NAND
+          controller as a DT device.
+
+if MTD_NAND_DENALI
+
+config MTD_NAND_DENALI_TIMING_MODE
+	int "Overrides default ONFI timing mode."
+	default -1
+	range -1 5
+	help
+	   -1 indicates use default timings
+
+endif
+
 endif
diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile
index a0b3198..8809238 100644
--- a/drivers/mtd/nand/Makefile
+++ b/drivers/mtd/nand/Makefile
@@ -16,3 +16,6 @@ obj-$(CONFIG_NAND_ATMEL)		+= atmel_nand.o
 obj-$(CONFIG_NAND_S3C24XX)		+= nand_s3c24xx.o
 pbl-$(CONFIG_NAND_S3C24XX)		+= nand_s3c24xx.o
 obj-$(CONFIG_NAND_MXS)			+= nand_mxs.o
+obj-$(CONFIG_MTD_NAND_DENALI)		+= nand_denali.o
+obj-$(CONFIG_MTD_NAND_DENALI_DT)	+= nand_denali_dt.o
+
diff --git a/drivers/mtd/nand/denali.h b/drivers/mtd/nand/denali.h
new file mode 100644
index 0000000..f5511c9
--- /dev/null
+++ b/drivers/mtd/nand/denali.h
@@ -0,0 +1,499 @@
+/*
+ * NAND Flash Controller Device Driver
+ * Copyright (c) 2009 - 2010, Intel Corporation and its suppliers.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ */
+
+#ifndef __DENALI_H__
+#define __DENALI_H__
+
+#include <linux/mtd/nand.h>
+
+#define DEVICE_RESET				0x0
+#define     DEVICE_RESET__BANK0				0x0001
+#define     DEVICE_RESET__BANK1				0x0002
+#define     DEVICE_RESET__BANK2				0x0004
+#define     DEVICE_RESET__BANK3				0x0008
+
+#define TRANSFER_SPARE_REG			0x10
+#define     TRANSFER_SPARE_REG__FLAG			0x0001
+
+#define LOAD_WAIT_CNT				0x20
+#define     LOAD_WAIT_CNT__VALUE			0xffff
+
+#define PROGRAM_WAIT_CNT			0x30
+#define     PROGRAM_WAIT_CNT__VALUE			0xffff
+
+#define ERASE_WAIT_CNT				0x40
+#define     ERASE_WAIT_CNT__VALUE			0xffff
+
+#define INT_MON_CYCCNT				0x50
+#define     INT_MON_CYCCNT__VALUE			0xffff
+
+#define RB_PIN_ENABLED				0x60
+#define     RB_PIN_ENABLED__BANK0			0x0001
+#define     RB_PIN_ENABLED__BANK1			0x0002
+#define     RB_PIN_ENABLED__BANK2			0x0004
+#define     RB_PIN_ENABLED__BANK3			0x0008
+
+#define MULTIPLANE_OPERATION			0x70
+#define     MULTIPLANE_OPERATION__FLAG			0x0001
+
+#define MULTIPLANE_READ_ENABLE			0x80
+#define     MULTIPLANE_READ_ENABLE__FLAG		0x0001
+
+#define COPYBACK_DISABLE			0x90
+#define     COPYBACK_DISABLE__FLAG			0x0001
+
+#define CACHE_WRITE_ENABLE			0xa0
+#define     CACHE_WRITE_ENABLE__FLAG			0x0001
+
+#define CACHE_READ_ENABLE			0xb0
+#define     CACHE_READ_ENABLE__FLAG			0x0001
+
+#define PREFETCH_MODE				0xc0
+#define     PREFETCH_MODE__PREFETCH_EN			0x0001
+#define     PREFETCH_MODE__PREFETCH_BURST_LENGTH	0xfff0
+
+#define CHIP_ENABLE_DONT_CARE			0xd0
+#define     CHIP_EN_DONT_CARE__FLAG			0x01
+
+#define ECC_ENABLE				0xe0
+#define     ECC_ENABLE__FLAG				0x0001
+
+#define GLOBAL_INT_ENABLE			0xf0
+#define     GLOBAL_INT_EN_FLAG				0x01
+
+#define WE_2_RE					0x100
+#define     WE_2_RE__VALUE				0x003f
+
+#define ADDR_2_DATA				0x110
+#define     ADDR_2_DATA__VALUE				0x003f
+
+#define RE_2_WE					0x120
+#define     RE_2_WE__VALUE				0x003f
+
+#define ACC_CLKS				0x130
+#define     ACC_CLKS__VALUE				0x000f
+
+#define NUMBER_OF_PLANES			0x140
+#define     NUMBER_OF_PLANES__VALUE			0x0007
+
+#define PAGES_PER_BLOCK				0x150
+#define     PAGES_PER_BLOCK__VALUE			0xffff
+
+#define DEVICE_WIDTH				0x160
+#define     DEVICE_WIDTH__VALUE				0x0003
+
+#define DEVICE_MAIN_AREA_SIZE			0x170
+#define     DEVICE_MAIN_AREA_SIZE__VALUE		0xffff
+
+#define DEVICE_SPARE_AREA_SIZE			0x180
+#define     DEVICE_SPARE_AREA_SIZE__VALUE		0xffff
+
+#define TWO_ROW_ADDR_CYCLES			0x190
+#define     TWO_ROW_ADDR_CYCLES__FLAG			0x0001
+
+#define MULTIPLANE_ADDR_RESTRICT		0x1a0
+#define     MULTIPLANE_ADDR_RESTRICT__FLAG		0x0001
+
+#define ECC_CORRECTION				0x1b0
+#define     ECC_CORRECTION__VALUE			0x001f
+
+#define READ_MODE				0x1c0
+#define     READ_MODE__VALUE				0x000f
+
+#define WRITE_MODE				0x1d0
+#define     WRITE_MODE__VALUE				0x000f
+
+#define COPYBACK_MODE				0x1e0
+#define     COPYBACK_MODE__VALUE			0x000f
+
+#define RDWR_EN_LO_CNT				0x1f0
+#define     RDWR_EN_LO_CNT__VALUE			0x001f
+
+#define RDWR_EN_HI_CNT				0x200
+#define     RDWR_EN_HI_CNT__VALUE			0x001f
+
+#define MAX_RD_DELAY				0x210
+#define     MAX_RD_DELAY__VALUE				0x000f
+
+#define CS_SETUP_CNT				0x220
+#define     CS_SETUP_CNT__VALUE				0x001f
+
+#define SPARE_AREA_SKIP_BYTES			0x230
+#define     SPARE_AREA_SKIP_BYTES__VALUE		0x003f
+
+#define SPARE_AREA_MARKER			0x240
+#define     SPARE_AREA_MARKER__VALUE			0xffff
+
+#define DEVICES_CONNECTED			0x250
+#define     DEVICES_CONNECTED__VALUE			0x0007
+
+#define DIE_MASK				0x260
+#define     DIE_MASK__VALUE				0x00ff
+
+#define FIRST_BLOCK_OF_NEXT_PLANE		0x270
+#define     FIRST_BLOCK_OF_NEXT_PLANE__VALUE		0xffff
+
+#define WRITE_PROTECT				0x280
+#define     WRITE_PROTECT__FLAG				0x0001
+
+#define RE_2_RE					0x290
+#define     RE_2_RE__VALUE				0x003f
+
+#define MANUFACTURER_ID				0x300
+#define     MANUFACTURER_ID__VALUE			0x00ff
+
+#define DEVICE_ID				0x310
+#define     DEVICE_ID__VALUE				0x00ff
+
+#define DEVICE_PARAM_0				0x320
+#define     DEVICE_PARAM_0__VALUE			0x00ff
+
+#define DEVICE_PARAM_1				0x330
+#define     DEVICE_PARAM_1__VALUE			0x00ff
+
+#define DEVICE_PARAM_2				0x340
+#define     DEVICE_PARAM_2__VALUE			0x00ff
+
+#define LOGICAL_PAGE_DATA_SIZE			0x350
+#define     LOGICAL_PAGE_DATA_SIZE__VALUE		0xffff
+
+#define LOGICAL_PAGE_SPARE_SIZE			0x360
+#define     LOGICAL_PAGE_SPARE_SIZE__VALUE		0xffff
+
+#define REVISION				0x370
+#define     REVISION__VALUE				0xffff
+
+#define ONFI_DEVICE_FEATURES			0x380
+#define     ONFI_DEVICE_FEATURES__VALUE			0x003f
+
+#define ONFI_OPTIONAL_COMMANDS			0x390
+#define     ONFI_OPTIONAL_COMMANDS__VALUE		0x003f
+
+#define ONFI_TIMING_MODE			0x3a0
+#define     ONFI_TIMING_MODE__VALUE			0x003f
+
+#define ONFI_PGM_CACHE_TIMING_MODE		0x3b0
+#define     ONFI_PGM_CACHE_TIMING_MODE__VALUE		0x003f
+
+#define ONFI_DEVICE_NO_OF_LUNS			0x3c0
+#define     ONFI_DEVICE_NO_OF_LUNS__NO_OF_LUNS		0x00ff
+#define     ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE		0x0100
+
+#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L	0x3d0
+#define     ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_L__VALUE	0xffff
+
+#define ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U	0x3e0
+#define     ONFI_DEVICE_NO_OF_BLOCKS_PER_LUN_U__VALUE	0xffff
+
+#define FEATURES					0x3f0
+#define     FEATURES__N_BANKS				0x0003
+#define     FEATURES__ECC_MAX_ERR			0x003c
+#define     FEATURES__DMA				0x0040
+#define     FEATURES__CMD_DMA				0x0080
+#define     FEATURES__PARTITION				0x0100
+#define     FEATURES__XDMA_SIDEBAND			0x0200
+#define     FEATURES__GPREG				0x0400
+#define     FEATURES__INDEX_ADDR			0x0800
+
+#define TRANSFER_MODE				0x400
+#define     TRANSFER_MODE__VALUE			0x0003
+
+#define INTR_STATUS(__bank)	(0x410 + ((__bank) * 0x50))
+#define INTR_EN(__bank)		(0x420 + ((__bank) * 0x50))
+
+/*
+ * Some versions of the IP have the ECC fixup handled in hardware.  In this
+ * configuration we only get interrupted when the error is uncorrectable.
+ * Unfortunately this bit replaces INTR_STATUS__ECC_TRANSACTION_DONE from the
+ * old IP.
+ * taken from patch by Jamie Iles <jamie at jamieiles.com>
+ *  support hardware with internal ECC fixup
+ */
+#define     INTR_STATUS__ECC_UNCOR_ERR                 0x0001
+
+#define     INTR_STATUS__ECC_TRANSACTION_DONE		0x0001
+#define     INTR_STATUS__ECC_ERR			0x0002
+#define     INTR_STATUS__DMA_CMD_COMP			0x0004
+#define     INTR_STATUS__TIME_OUT			0x0008
+#define     INTR_STATUS__PROGRAM_FAIL			0x0010
+#define     INTR_STATUS__ERASE_FAIL			0x0020
+#define     INTR_STATUS__LOAD_COMP			0x0040
+#define     INTR_STATUS__PROGRAM_COMP			0x0080
+#define     INTR_STATUS__ERASE_COMP			0x0100
+#define     INTR_STATUS__PIPE_CPYBCK_CMD_COMP		0x0200
+#define     INTR_STATUS__LOCKED_BLK			0x0400
+#define     INTR_STATUS__UNSUP_CMD			0x0800
+#define     INTR_STATUS__INT_ACT			0x1000
+#define     INTR_STATUS__RST_COMP			0x2000
+#define     INTR_STATUS__PIPE_CMD_ERR			0x4000
+#define     INTR_STATUS__PAGE_XFER_INC			0x8000
+
+#define     INTR_EN__ECC_TRANSACTION_DONE		0x0001
+#define     INTR_EN__ECC_ERR				0x0002
+#define     INTR_EN__DMA_CMD_COMP			0x0004
+#define     INTR_EN__TIME_OUT				0x0008
+#define     INTR_EN__PROGRAM_FAIL			0x0010
+#define     INTR_EN__ERASE_FAIL				0x0020
+#define     INTR_EN__LOAD_COMP				0x0040
+#define     INTR_EN__PROGRAM_COMP			0x0080
+#define     INTR_EN__ERASE_COMP				0x0100
+#define     INTR_EN__PIPE_CPYBCK_CMD_COMP		0x0200
+#define     INTR_EN__LOCKED_BLK				0x0400
+#define     INTR_EN__UNSUP_CMD				0x0800
+#define     INTR_EN__INT_ACT				0x1000
+#define     INTR_EN__RST_COMP				0x2000
+#define     INTR_EN__PIPE_CMD_ERR			0x4000
+#define     INTR_EN__PAGE_XFER_INC			0x8000
+
+#define PAGE_CNT(__bank)	(0x430 + ((__bank) * 0x50))
+#define ERR_PAGE_ADDR(__bank)	(0x440 + ((__bank) * 0x50))
+#define ERR_BLOCK_ADDR(__bank)	(0x450 + ((__bank) * 0x50))
+
+#define DATA_INTR				0x550
+#define     DATA_INTR__WRITE_SPACE_AV			0x0001
+#define     DATA_INTR__READ_DATA_AV			0x0002
+
+#define DATA_INTR_EN				0x560
+#define     DATA_INTR_EN__WRITE_SPACE_AV		0x0001
+#define     DATA_INTR_EN__READ_DATA_AV			0x0002
+
+#define GPREG_0					0x570
+#define     GPREG_0__VALUE				0xffff
+
+#define GPREG_1					0x580
+#define     GPREG_1__VALUE				0xffff
+
+#define GPREG_2					0x590
+#define     GPREG_2__VALUE				0xffff
+
+#define GPREG_3					0x5a0
+#define     GPREG_3__VALUE				0xffff
+
+#define ECC_THRESHOLD				0x600
+#define     ECC_THRESHOLD__VALUE			0x03ff
+
+#define ECC_ERROR_BLOCK_ADDRESS			0x610
+#define     ECC_ERROR_BLOCK_ADDRESS__VALUE		0xffff
+
+#define ECC_ERROR_PAGE_ADDRESS			0x620
+#define     ECC_ERROR_PAGE_ADDRESS__VALUE		0x0fff
+#define     ECC_ERROR_PAGE_ADDRESS__BANK		0xf000
+
+#define ECC_ERROR_ADDRESS			0x630
+#define     ECC_ERROR_ADDRESS__OFFSET			0x0fff
+#define     ECC_ERROR_ADDRESS__SECTOR_NR		0xf000
+
+#define ERR_CORRECTION_INFO			0x640
+#define     ERR_CORRECTION_INFO__BYTEMASK		0x00ff
+#define     ERR_CORRECTION_INFO__DEVICE_NR		0x0f00
+#define     ERR_CORRECTION_INFO__ERROR_TYPE		0x4000
+#define     ERR_CORRECTION_INFO__LAST_ERR_INFO		0x8000
+
+#define DMA_ENABLE				0x700
+#define     DMA_ENABLE__FLAG				0x0001
+
+#define IGNORE_ECC_DONE				0x710
+#define     IGNORE_ECC_DONE__FLAG			0x0001
+
+#define DMA_INTR				0x720
+#define     DMA_INTR__TARGET_ERROR			0x0001
+#define     DMA_INTR__DESC_COMP_CHANNEL0		0x0002
+#define     DMA_INTR__DESC_COMP_CHANNEL1		0x0004
+#define     DMA_INTR__DESC_COMP_CHANNEL2		0x0008
+#define     DMA_INTR__DESC_COMP_CHANNEL3		0x0010
+#define     DMA_INTR__MEMCOPY_DESC_COMP		0x0020
+
+#define DMA_INTR_EN				0x730
+#define     DMA_INTR_EN__TARGET_ERROR			0x0001
+#define     DMA_INTR_EN__DESC_COMP_CHANNEL0		0x0002
+#define     DMA_INTR_EN__DESC_COMP_CHANNEL1		0x0004
+#define     DMA_INTR_EN__DESC_COMP_CHANNEL2		0x0008
+#define     DMA_INTR_EN__DESC_COMP_CHANNEL3		0x0010
+#define     DMA_INTR_EN__MEMCOPY_DESC_COMP		0x0020
+
+#define TARGET_ERR_ADDR_LO			0x740
+#define     TARGET_ERR_ADDR_LO__VALUE			0xffff
+
+#define TARGET_ERR_ADDR_HI			0x750
+#define     TARGET_ERR_ADDR_HI__VALUE			0xffff
+
+#define CHNL_ACTIVE				0x760
+#define     CHNL_ACTIVE__CHANNEL0			0x0001
+#define     CHNL_ACTIVE__CHANNEL1			0x0002
+#define     CHNL_ACTIVE__CHANNEL2			0x0004
+#define     CHNL_ACTIVE__CHANNEL3			0x0008
+
+#define FLASH_BURST_LENGTH             0x770
+#define CHIP_INTERLEAVE_ENABLE_AND_ALLOW_INT_READS             0X780
+#define NO_OF_BLOCKS_PER_LUN           0X790
+#define LUN_STATUS_CMD         0X7A0
+
+#define ACTIVE_SRC_ID				0x800
+#define     ACTIVE_SRC_ID__VALUE			0x00ff
+
+#define PTN_INTR					0x810
+#define     PTN_INTR__CONFIG_ERROR			0x0001
+#define     PTN_INTR__ACCESS_ERROR_BANK0		0x0002
+#define     PTN_INTR__ACCESS_ERROR_BANK1		0x0004
+#define     PTN_INTR__ACCESS_ERROR_BANK2		0x0008
+#define     PTN_INTR__ACCESS_ERROR_BANK3		0x0010
+#define     PTN_INTR__REG_ACCESS_ERROR			0x0020
+
+#define PTN_INTR_EN				0x820
+#define     PTN_INTR_EN__CONFIG_ERROR			0x0001
+#define     PTN_INTR_EN__ACCESS_ERROR_BANK0		0x0002
+#define     PTN_INTR_EN__ACCESS_ERROR_BANK1		0x0004
+#define     PTN_INTR_EN__ACCESS_ERROR_BANK2		0x0008
+#define     PTN_INTR_EN__ACCESS_ERROR_BANK3		0x0010
+#define     PTN_INTR_EN__REG_ACCESS_ERROR		0x0020
+
+#define PERM_SRC_ID(__bank)	(0x830 + ((__bank) * 0x40))
+#define     PERM_SRC_ID__SRCID				0x00ff
+#define     PERM_SRC_ID__DIRECT_ACCESS_ACTIVE		0x0800
+#define     PERM_SRC_ID__WRITE_ACTIVE			0x2000
+#define     PERM_SRC_ID__READ_ACTIVE			0x4000
+#define     PERM_SRC_ID__PARTITION_VALID		0x8000
+
+#define MIN_BLK_ADDR(__bank)	(0x840 + ((__bank) * 0x40))
+#define     MIN_BLK_ADDR__VALUE				0xffff
+
+#define MAX_BLK_ADDR(__bank)	(0x850 + ((__bank) * 0x40))
+#define     MAX_BLK_ADDR__VALUE				0xffff
+
+#define MIN_MAX_BANK(__bank)	(0x860 + ((__bank) * 0x40))
+#define     MIN_MAX_BANK__MIN_VALUE			0x0003
+#define     MIN_MAX_BANK__MAX_VALUE			0x000c
+
+
+/* ffsdefs.h */
+#define CLEAR 0                 /*use this to clear a field instead of "fail"*/
+#define SET   1                 /*use this to set a field instead of "pass"*/
+#define FAIL 1                  /*failed flag*/
+#define PASS 0                  /*success flag*/
+#define ERR -1                  /*error flag*/
+
+/* lld.h */
+#define GOOD_BLOCK 0
+#define DEFECTIVE_BLOCK 1
+#define READ_ERROR 2
+
+#define CLK_X  5
+#define CLK_MULTI 4
+
+/* spectraswconfig.h */
+#define CMD_DMA 0
+
+#define SPECTRA_PARTITION_ID    0
+/**** Block Table and Reserved Block Parameters *****/
+#define SPECTRA_START_BLOCK     3
+#define NUM_FREE_BLOCKS_GATE    30
+
+/* KBV - Updated to LNW scratch register address */
+#define SCRATCH_REG_ADDR    CONFIG_MTD_NAND_DENALI_SCRATCH_REG_ADDR
+#define SCRATCH_REG_SIZE    64
+
+#define GLOB_HWCTL_DEFAULT_BLKS    2048
+
+#define SUPPORT_15BITECC        1
+#define SUPPORT_8BITECC         1
+
+#define CUSTOM_CONF_PARAMS      0
+
+#define ONFI_BLOOM_TIME         1
+#define MODE5_WORKAROUND        0
+
+
+#define MODE_00    0x00000000
+#define MODE_01    0x04000000
+#define MODE_10    0x08000000
+#define MODE_11    0x0C000000
+
+
+#define DATA_TRANSFER_MODE              0
+#define PROTECTION_PER_BLOCK            1
+#define LOAD_WAIT_COUNT                 2
+#define PROGRAM_WAIT_COUNT              3
+#define ERASE_WAIT_COUNT                4
+#define INT_MONITOR_CYCLE_COUNT         5
+#define READ_BUSY_PIN_ENABLED           6
+#define MULTIPLANE_OPERATION_SUPPORT    7
+#define PRE_FETCH_MODE                  8
+#define CE_DONT_CARE_SUPPORT            9
+#define COPYBACK_SUPPORT                10
+#define CACHE_WRITE_SUPPORT             11
+#define CACHE_READ_SUPPORT              12
+#define NUM_PAGES_IN_BLOCK              13
+#define ECC_ENABLE_SELECT               14
+#define WRITE_ENABLE_2_READ_ENABLE      15
+#define ADDRESS_2_DATA                  16
+#define READ_ENABLE_2_WRITE_ENABLE      17
+#define TWO_ROW_ADDRESS_CYCLES          18
+#define MULTIPLANE_ADDRESS_RESTRICT     19
+#define ACC_CLOCKS                      20
+#define READ_WRITE_ENABLE_LOW_COUNT     21
+#define READ_WRITE_ENABLE_HIGH_COUNT    22
+
+#define ECC_SECTOR_SIZE     512
+
+struct nand_buf {
+	int head;
+	int tail;
+	uint8_t *buf;
+	dma_addr_t dma_buf;
+};
+
+#define INTEL_CE4100	1
+#define INTEL_MRST	2
+#define DT		3
+
+struct denali_nand_info {
+	struct mtd_info mtd;
+	struct nand_chip nand;
+	int flash_bank; /* currently selected chip */
+	int status;
+	int platform;
+	struct nand_buf buf;
+	struct device_d *dev;
+	int total_used_banks;
+	uint32_t block;  /* stored for future use */
+	uint32_t page;
+	void __iomem *flash_reg;  /* Mapped io reg base address */
+	void __iomem *flash_mem;  /* Mapped io reg base address */
+
+	/* elements used by ISR */
+	//struct completion complete;
+	spinlock_t irq_lock;
+	uint32_t irq_status;
+	int irq_debug_array[32];
+	int idx;
+	int irq;
+
+	uint32_t devnum;	/* represent how many nands connected */
+	uint32_t fwblks; /* represent how many blocks FW used */
+	uint32_t totalblks;
+	uint32_t blksperchip;
+	uint32_t bbtskipbytes;
+	uint32_t max_banks;
+	bool have_hw_ecc_fixup;
+};
+
+extern int denali_init(struct denali_nand_info *denali);
+extern void denali_remove(struct denali_nand_info *denali);
+
+#endif /* __DENALI_H__ */
diff --git a/drivers/mtd/nand/nand_denali.c b/drivers/mtd/nand/nand_denali.c
new file mode 100644
index 0000000..f2d9cb7
--- /dev/null
+++ b/drivers/mtd/nand/nand_denali.c
@@ -0,0 +1,1559 @@
+/*
+ * NAND Flash Controller Device Driver
+ * Copyright © 2009-2010, Intel Corporation and its suppliers.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ */
+
+#include <common.h>
+#include <dma.h>
+#include <driver.h>
+#include <malloc.h>
+#include <init.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <mach/generic.h>
+#include <io.h>
+#include <of_mtd.h>
+#include <errno.h>
+#include <asm/io.h>
+#include "denali.h"
+
+#define NAND_DEFAULT_TIMINGS	-1
+
+static int onfi_timing_mode = CONFIG_MTD_NAND_DENALI_TIMING_MODE;
+
+#define DENALI_NAND_NAME    "denali-nand"
+
+/*
+ * We define a macro here that combines all interrupts this driver uses into
+ * a single constant value, for convenience.
+ */
+#define DENALI_IRQ_ALL	(INTR_STATUS__DMA_CMD_COMP | \
+			INTR_STATUS__ECC_TRANSACTION_DONE | \
+			INTR_STATUS__ECC_ERR | \
+			INTR_STATUS__PROGRAM_FAIL | \
+			INTR_STATUS__LOAD_COMP | \
+			INTR_STATUS__PROGRAM_COMP | \
+			INTR_STATUS__TIME_OUT | \
+			INTR_STATUS__ERASE_FAIL | \
+			INTR_STATUS__RST_COMP | \
+			INTR_STATUS__ERASE_COMP | \
+			INTR_STATUS__ECC_UNCOR_ERR)
+/* And here we use a variable for interrupt mask, bcs we want to
+ * change the irq mask during init.  That is, we want to enable R/B
+ * interrupt during init, but not at other times */
+static uint32_t denali_irq_mask = DENALI_IRQ_ALL;
+
+
+/*
+ * indicates whether or not the internal value for the flash bank is
+ * valid or not
+ */
+#define CHIP_SELECT_INVALID	-1
+
+#define SUPPORT_8BITECC		1
+
+/*
+ * This macro divides two integers and rounds fractional values up
+ * to the nearest integer value.
+ */
+#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
+
+/*
+ * this macro allows us to convert from an MTD structure to our own
+ * device context (denali) structure.
+ */
+#define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)
+
+/*
+ * These constants are defined by the driver to enable common driver
+ * configuration options.
+ */
+#define SPARE_ACCESS		0x41
+#define MAIN_ACCESS		0x42
+#define MAIN_SPARE_ACCESS	0x43
+#define PIPELINE_ACCESS		0x2000
+
+#define DENALI_READ	0
+#define DENALI_WRITE	0x100
+
+/* types of device accesses. We can issue commands and get status */
+#define COMMAND_CYCLE	0
+#define ADDR_CYCLE	1
+#define STATUS_CYCLE	2
+
+/*
+ * this is a helper macro that allows us to
+ * format the bank into the proper bits for the controller
+ */
+#define BANK(x) ((x) << 24)
+
+/* forward declarations */
+static void clear_interrupts(struct denali_nand_info *denali);
+static uint32_t wait_for_irq(struct denali_nand_info *denali,
+							uint32_t irq_mask);
+static void denali_irq_enable(struct denali_nand_info *denali,
+							uint32_t int_mask);
+static uint32_t read_interrupt_status(struct denali_nand_info *denali);
+
+/*
+ * Certain operations for the denali NAND controller use an indexed mode to
+ * read/write data. The operation is performed by writing the address value
+ * of the command to the device memory followed by the data. This function
+ * abstracts this common operation.
+ */
+static void index_addr(struct denali_nand_info *denali,
+				uint32_t address, uint32_t data)
+{
+	iowrite32(address, denali->flash_mem);
+	iowrite32(data, denali->flash_mem + 0x10);
+}
+
+/* Perform an indexed read of the device */
+static void index_addr_read_data(struct denali_nand_info *denali,
+				 uint32_t address, uint32_t *pdata)
+{
+	iowrite32(address, denali->flash_mem);
+	*pdata = ioread32(denali->flash_mem + 0x10);
+}
+
+/*
+ * We need to buffer some data for some of the NAND core routines.
+ * The operations manage buffering that data.
+ */
+static void reset_buf(struct denali_nand_info *denali)
+{
+	denali->buf.head = denali->buf.tail = 0;
+}
+
+static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
+{
+	denali->buf.buf[denali->buf.tail++] = byte;
+}
+
+/* reads the status of the device */
+static void read_status(struct denali_nand_info *denali)
+{
+	uint32_t cmd;
+
+	/* initialize the data buffer to store status */
+	reset_buf(denali);
+
+	cmd = ioread32(denali->flash_reg + WRITE_PROTECT);
+	if (cmd)
+		write_byte_to_buf(denali, NAND_STATUS_WP);
+	else
+		write_byte_to_buf(denali, 0);
+}
+
+/* resets a specific device connected to the core */
+static void reset_bank(struct denali_nand_info *denali)
+{
+	iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
+
+	/* wait for completion */
+	while (ioread32(denali->flash_reg + DEVICE_RESET) & (1 << denali->flash_bank))
+			barrier();
+}
+
+/* Reset the flash controller */
+static uint16_t denali_nand_reset(struct denali_nand_info *denali)
+{
+	int i;
+
+	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
+		__FILE__, __LINE__, __func__);
+
+	for (i = 0; i < denali->max_banks; i++)
+		iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
+		denali->flash_reg + INTR_STATUS(i));
+
+	for (i = 0; i < denali->max_banks; i++) {
+		iowrite32(1 << i, denali->flash_reg + DEVICE_RESET);
+		while (!(ioread32(denali->flash_reg + INTR_STATUS(i)) &
+			(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
+			/* cpu_relax(); */
+			barrier();
+		if (ioread32(denali->flash_reg + INTR_STATUS(i)) &
+			INTR_STATUS__TIME_OUT)
+			dev_dbg(denali->dev,
+			"NAND Reset operation timed out on bank %d\n", i);
+	}
+
+	for (i = 0; i < denali->max_banks; i++)
+		iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
+			  denali->flash_reg + INTR_STATUS(i));
+
+	return PASS;
+}
+
+/*
+ * this routine calculates the ONFI timing values for a given mode and
+ * programs the clocking register accordingly. The mode is determined by
+ * the get_onfi_nand_para routine.
+ */
+static void nand_onfi_timing_set(struct denali_nand_info *denali,
+								uint16_t mode)
+{
+	uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
+	uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
+	uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
+	uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
+	uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
+	uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
+	uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
+	uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
+	uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
+	uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
+	uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
+	uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};
+
+	uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
+	uint16_t dv_window = 0;
+	uint16_t en_lo, en_hi;
+	uint16_t acc_clks;
+	uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
+
+	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
+		__FILE__, __LINE__, __func__);
+
+	en_lo = CEIL_DIV(Trp[mode], CLK_X);
+	en_hi = CEIL_DIV(Treh[mode], CLK_X);
+#if ONFI_BLOOM_TIME
+	if ((en_hi * CLK_X) < (Treh[mode] + 2))
+		en_hi++;
+#endif
+
+	if ((en_lo + en_hi) * CLK_X < Trc[mode])
+		en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);
+
+	if ((en_lo + en_hi) < CLK_MULTI)
+		en_lo += CLK_MULTI - en_lo - en_hi;
+
+	while (dv_window < 8) {
+		data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];
+
+		data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];
+
+		data_invalid = data_invalid_rhoh < data_invalid_rloh ?
+					data_invalid_rhoh : data_invalid_rloh;
+
+		dv_window = data_invalid - Trea[mode];
+
+		if (dv_window < 8)
+			en_lo++;
+	}
+
+	acc_clks = CEIL_DIV(Trea[mode], CLK_X);
+
+	while (acc_clks * CLK_X - Trea[mode] < 3)
+		acc_clks++;
+
+	if (data_invalid - acc_clks * CLK_X < 2)
+		dev_warn(denali->dev, "%s, Line %d: Warning!\n",
+			 __FILE__, __LINE__);
+
+	addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
+	re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
+	re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
+	we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
+	cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
+	if (cs_cnt == 0)
+		cs_cnt = 1;
+
+	if (Tcea[mode]) {
+		while (cs_cnt * CLK_X + Trea[mode] < Tcea[mode])
+			cs_cnt++;
+	}
+
+#if MODE5_WORKAROUND
+	if (mode == 5)
+		acc_clks = 5;
+#endif
+
+	/* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
+	if (ioread32(denali->flash_reg + MANUFACTURER_ID) == 0 &&
+		ioread32(denali->flash_reg + DEVICE_ID) == 0x88)
+		acc_clks = 6;
+
+	iowrite32(acc_clks, denali->flash_reg + ACC_CLKS);
+	iowrite32(re_2_we, denali->flash_reg + RE_2_WE);
+	iowrite32(re_2_re, denali->flash_reg + RE_2_RE);
+	iowrite32(we_2_re, denali->flash_reg + WE_2_RE);
+	iowrite32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
+	iowrite32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
+	iowrite32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
+	iowrite32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
+}
+
+/* queries the NAND device to see what ONFI modes it supports. */
+static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
+{
+	int i;
+
+	/*
+	 * we needn't to do a reset here because driver has already
+	 * reset all the banks before
+	 */
+	if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
+		ONFI_TIMING_MODE__VALUE))
+		return FAIL;
+
+	for (i = 5; i > 0; i--) {
+		if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
+			(0x01 << i))
+			break;
+	}
+
+	nand_onfi_timing_set(denali, i);
+
+	/*
+	 * By now, all the ONFI devices we know support the page cache
+	 * rw feature. So here we enable the pipeline_rw_ahead feature
+	 */
+	/* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
+	/* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE);  */
+
+	return PASS;
+}
+
+static void get_samsung_nand_para(struct denali_nand_info *denali,
+							uint8_t device_id)
+{
+	if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
+		/* Set timing register values according to datasheet */
+		iowrite32(5, denali->flash_reg + ACC_CLKS);
+		iowrite32(20, denali->flash_reg + RE_2_WE);
+		iowrite32(12, denali->flash_reg + WE_2_RE);
+		iowrite32(14, denali->flash_reg + ADDR_2_DATA);
+		iowrite32(3, denali->flash_reg + RDWR_EN_LO_CNT);
+		iowrite32(2, denali->flash_reg + RDWR_EN_HI_CNT);
+		iowrite32(2, denali->flash_reg + CS_SETUP_CNT);
+	}
+}
+
+static void get_toshiba_nand_para(struct denali_nand_info *denali)
+{
+	uint32_t tmp;
+
+	/*
+	 * Workaround to fix a controller bug which reports a wrong
+	 * spare area size for some kind of Toshiba NAND device
+	 */
+	if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
+		(ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
+		iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
+		tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
+			ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
+		iowrite32(tmp,
+				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
+#if SUPPORT_15BITECC
+		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
+#elif SUPPORT_8BITECC
+		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
+#endif
+	}
+}
+
+static void get_hynix_nand_para(struct denali_nand_info *denali,
+							uint8_t device_id)
+{
+	uint32_t main_size, spare_size;
+
+	switch (device_id) {
+	case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
+	case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
+		iowrite32(128, denali->flash_reg + PAGES_PER_BLOCK);
+		iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
+		iowrite32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
+		main_size = 4096 *
+			ioread32(denali->flash_reg + DEVICES_CONNECTED);
+		spare_size = 224 *
+			ioread32(denali->flash_reg + DEVICES_CONNECTED);
+		iowrite32(main_size,
+				denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
+		iowrite32(spare_size,
+				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
+		iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
+#if SUPPORT_15BITECC
+		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
+#elif SUPPORT_8BITECC
+		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
+#endif
+		break;
+	default:
+		dev_warn(denali->dev,
+			 "Spectra: Unknown Hynix NAND (Device ID: 0x%x).\n"
+			 "Will use default parameter values instead.\n",
+			 device_id);
+	}
+}
+
+/*
+ * determines how many NAND chips are connected to the controller. Note for
+ * Intel CE4100 devices we don't support more than one device.
+ */
+static void find_valid_banks(struct denali_nand_info *denali)
+{
+	uint32_t id[denali->max_banks];
+	int i;
+
+	denali->total_used_banks = 1;
+	for (i = 0; i < denali->max_banks; i++) {
+		index_addr(denali, MODE_11 | (i << 24) | 0, 0x90);
+		index_addr(denali, MODE_11 | (i << 24) | 1, 0);
+		index_addr_read_data(denali, MODE_11 | (i << 24) | 2, &id[i]);
+
+		dev_dbg(denali->dev,
+			"Return 1st ID for bank[%d]: %x\n", i, id[i]);
+
+		if (i == 0) {
+			if (!(id[i] & 0x0ff))
+				break; /* WTF? */
+		} else {
+			if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
+				denali->total_used_banks++;
+			else
+				break;
+		}
+	}
+
+	if (denali->platform == INTEL_CE4100) {
+		/*
+		 * Platform limitations of the CE4100 device limit
+		 * users to a single chip solution for NAND.
+		 * Multichip support is not enabled.
+		 */
+		if (denali->total_used_banks != 1) {
+			dev_err(denali->dev,
+				"Sorry, Intel CE4100 only supports a single NAND device.\n");
+			BUG();
+		}
+	}
+	dev_dbg(denali->dev,
+		"denali->total_used_banks: %d\n", denali->total_used_banks);
+}
+
+/*
+ * Use the configuration feature register to determine the maximum number of
+ * banks that the hardware supports.
+ */
+static void detect_max_banks(struct denali_nand_info *denali)
+{
+	uint32_t features = ioread32(denali->flash_reg + FEATURES);
+
+	denali->max_banks = 2 << (features & FEATURES__N_BANKS);
+}
+
+static void detect_partition_feature(struct denali_nand_info *denali)
+{
+	/*
+	 * For MRST platform, denali->fwblks represent the
+	 * number of blocks firmware is taken,
+	 * FW is in protect partition and MTD driver has no
+	 * permission to access it. So let driver know how many
+	 * blocks it can't touch.
+	 */
+	if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
+		if ((ioread32(denali->flash_reg + PERM_SRC_ID(1)) &
+			PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) {
+			denali->fwblks =
+			    ((ioread32(denali->flash_reg + MIN_MAX_BANK(1)) &
+			      MIN_MAX_BANK__MIN_VALUE) *
+			     denali->blksperchip)
+			    +
+			    (ioread32(denali->flash_reg + MIN_BLK_ADDR(1)) &
+			    MIN_BLK_ADDR__VALUE);
+		} else {
+			denali->fwblks = SPECTRA_START_BLOCK;
+		}
+	} else {
+		denali->fwblks = SPECTRA_START_BLOCK;
+	}
+}
+
+static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
+{
+	uint16_t status = PASS;
+	uint32_t id_bytes[8], addr;
+	uint8_t maf_id, device_id;
+	int i;
+
+	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
+			__FILE__, __LINE__, __func__);
+
+	/*
+	 * Use read id method to get device ID and other params.
+	 * For some NAND chips, controller can't report the correct
+	 * device ID by reading from DEVICE_ID register
+	 */
+	addr = MODE_11 | BANK(denali->flash_bank);
+	index_addr(denali, addr | 0, 0x90);
+	index_addr(denali, addr | 1, 0);
+	for (i = 0; i < 8; i++)
+		index_addr_read_data(denali, addr | 2, &id_bytes[i]);
+	maf_id = id_bytes[0];
+	device_id = id_bytes[1];
+
+	if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
+		ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
+		if (FAIL == get_onfi_nand_para(denali))
+			return FAIL;
+	} else if (maf_id == 0xEC) { /* Samsung NAND */
+		get_samsung_nand_para(denali, device_id);
+	} else if (maf_id == 0x98) { /* Toshiba NAND */
+		get_toshiba_nand_para(denali);
+	} else if (maf_id == 0xAD) { /* Hynix NAND */
+		get_hynix_nand_para(denali, device_id);
+	}
+
+	dev_info(denali->dev,
+			"Dump timing register values:\n"
+			"acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
+			"we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
+			"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
+			ioread32(denali->flash_reg + ACC_CLKS),
+			ioread32(denali->flash_reg + RE_2_WE),
+			ioread32(denali->flash_reg + RE_2_RE),
+			ioread32(denali->flash_reg + WE_2_RE),
+			ioread32(denali->flash_reg + ADDR_2_DATA),
+			ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
+			ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
+			ioread32(denali->flash_reg + CS_SETUP_CNT));
+
+	find_valid_banks(denali);
+
+	detect_partition_feature(denali);
+
+	/*
+	 * If the user specified to override the default timings
+	 * with a specific ONFI mode, we apply those changes here.
+	 */
+	if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
+		nand_onfi_timing_set(denali, onfi_timing_mode);
+
+	return status;
+}
+
+static void denali_set_intr_modes(struct denali_nand_info *denali,
+					uint16_t INT_ENABLE)
+{
+	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
+		__FILE__, __LINE__, __func__);
+
+	if (INT_ENABLE)
+		iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
+	else
+		iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
+}
+
+/*
+ * validation function to verify that the controlling software is making
+ * a valid request
+ */
+static inline bool is_flash_bank_valid(int flash_bank)
+{
+	return flash_bank >= 0 && flash_bank < 4;
+}
+
+
+static void denali_irq_init(struct denali_nand_info *denali)
+{
+	uint32_t int_mask;
+	int i;
+
+	/* Disable global interrupts */
+	denali_set_intr_modes(denali, false);
+
+	int_mask = DENALI_IRQ_ALL;
+
+	/* Clear all status bits */
+	for (i = 0; i < denali->max_banks; ++i)
+		iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i));
+
+	denali_irq_enable(denali, int_mask);
+}
+
+
+static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
+{
+	denali_set_intr_modes(denali, false);
+}
+
+static void denali_irq_enable(struct denali_nand_info *denali,
+							uint32_t int_mask)
+{
+	int i;
+
+	for (i = 0; i < denali->max_banks; ++i)
+		iowrite32(int_mask, denali->flash_reg + INTR_EN(i));
+}
+
+/* Interrupts are cleared by writing a 1 to the appropriate status bit */
+static inline void clear_interrupt(struct denali_nand_info *denali,
+							uint32_t irq_mask)
+{
+	uint32_t intr_status_reg;
+
+	intr_status_reg = INTR_STATUS(denali->flash_bank);
+
+	iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
+}
+
+static void clear_interrupts(struct denali_nand_info *denali)
+{
+	uint32_t status;
+
+	status = read_interrupt_status(denali);
+	clear_interrupt(denali, status);
+
+	denali->irq_status = 0x0;
+}
+
+static uint32_t read_interrupt_status(struct denali_nand_info *denali)
+{
+	uint32_t intr_status_reg;
+
+	intr_status_reg = INTR_STATUS(denali->flash_bank);
+
+	return ioread32(denali->flash_reg + intr_status_reg);
+}
+
+static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
+{
+	unsigned long comp_res = 1000;
+	uint32_t intr_status = 0;
+
+	do {
+		intr_status = read_interrupt_status(denali);
+		if (intr_status & irq_mask) {
+			/* our interrupt was detected */
+			break;
+		}
+		udelay(1);
+		comp_res--;
+	} while (comp_res != 0);
+
+	if (comp_res == 0) {
+		/* timeout */
+		intr_status = 0;
+		dev_dbg(denali->dev, "timeout occurred, status = 0x%x, mask = 0x%x\n",
+				intr_status, irq_mask);
+	}
+	return intr_status;	
+}
+
+/*
+ * This helper function setups the registers for ECC and whether or not
+ * the spare area will be transferred.
+ */
+static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
+				bool transfer_spare)
+{
+	int ecc_en_flag, transfer_spare_flag;
+
+	/* set ECC, transfer spare bits if needed */
+	ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
+	transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
+
+	/* Enable spare area/ECC per user's request. */
+	iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
+	iowrite32(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG);
+}
+
+/*
+ * sends a pipeline command operation to the controller. See the Denali NAND
+ * controller's user guide for more information (section 4.2.3.6).
+ */
+static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
+				    bool ecc_en, bool transfer_spare,
+				    int access_type, int op)
+{
+	int status = PASS;
+	uint32_t page_count = 1;
+	uint32_t addr, cmd, irq_status, irq_mask;
+
+	if (op == DENALI_READ)
+		irq_mask = INTR_STATUS__LOAD_COMP;
+	else if (op == DENALI_WRITE)
+		irq_mask = 0;
+	else
+		BUG();
+
+	setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
+
+	clear_interrupts(denali);
+
+	addr = BANK(denali->flash_bank) | denali->page;
+
+	if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
+		cmd = MODE_01 | addr;
+		iowrite32(cmd, denali->flash_mem);
+	} else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
+		/* read spare area */
+		cmd = MODE_10 | addr;
+		index_addr(denali, cmd, access_type);
+
+		cmd = MODE_01 | addr;
+		iowrite32(cmd, denali->flash_mem);
+	} else if (op == DENALI_READ) {
+		/* setup page read request for access type */
+		cmd = MODE_10 | addr;
+		index_addr(denali, cmd, access_type);
+
+		/*
+		 * page 33 of the NAND controller spec indicates we should not
+		 * use the pipeline commands in Spare area only mode.
+		 * So we don't.
+		 */
+		if (access_type == SPARE_ACCESS) {
+			cmd = MODE_01 | addr;
+			iowrite32(cmd, denali->flash_mem);
+		} else {
+			index_addr(denali, cmd,
+					PIPELINE_ACCESS | op | page_count);
+
+			/*
+			 * wait for command to be accepted
+			 * can always use status0 bit as the
+			 * mask is identical for each bank.
+			 */
+			irq_status = wait_for_irq(denali, irq_mask);
+
+			if (irq_status == 0) {
+				dev_err(denali->dev,
+					"cmd, page, addr on timeout (0x%x, 0x%x, 0x%x)\n",
+					cmd, denali->page, addr);
+				status = FAIL;
+			} else {
+				cmd = MODE_01 | addr;
+				iowrite32(cmd, denali->flash_mem);
+			}
+		}
+	}
+	return status;
+}
+
+/* helper function that simply writes a buffer to the flash */
+static int write_data_to_flash_mem(struct denali_nand_info *denali,
+				   const uint8_t *buf, int len)
+{
+	uint32_t *buf32;
+	int i;
+
+	/*
+	 * verify that the len is a multiple of 4.
+	 * see comment in read_data_from_flash_mem()
+	 */
+	BUG_ON((len % 4) != 0);
+
+	/* write the data to the flash memory */
+	buf32 = (uint32_t *)buf;
+	for (i = 0; i < len / 4; i++)
+		iowrite32(*buf32++, denali->flash_mem + 0x10);
+	return i * 4; /* intent is to return the number of bytes read */
+}
+
+/* helper function that simply reads a buffer from the flash */
+static int read_data_from_flash_mem(struct denali_nand_info *denali,
+				    uint8_t *buf, int len)
+{
+	uint32_t *buf32;
+	int i;
+
+	/*
+	 * we assume that len will be a multiple of 4, if not it would be nice
+	 * to know about it ASAP rather than have random failures...
+	 * This assumption is based on the fact that this function is designed
+	 * to be used to read flash pages, which are typically multiples of 4.
+	 */
+	BUG_ON((len % 4) != 0);
+
+	/* transfer the data from the flash */
+	buf32 = (uint32_t *)buf;
+	for (i = 0; i < len / 4; i++)
+		*buf32++ = ioread32(denali->flash_mem + 0x10);
+	return i * 4; /* intent is to return the number of bytes read */
+}
+
+/* writes OOB data to the device */
+static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	uint32_t irq_status;
+	uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP |
+						INTR_STATUS__PROGRAM_FAIL;
+	int status = 0;
+
+	denali->page = page;
+
+	if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
+							DENALI_WRITE) == PASS) {
+		write_data_to_flash_mem(denali, buf, mtd->oobsize);
+
+		/* wait for operation to complete */
+		irq_status = wait_for_irq(denali, irq_mask);
+
+		if (irq_status == 0) {
+			dev_err(denali->dev, "OOB write failed\n");
+			status = -EIO;
+		}
+
+		/* set the device back to MAIN_ACCESS */
+		{
+			uint32_t addr;
+			uint32_t cmd;
+			addr = BANK(denali->flash_bank) | denali->page;
+			cmd = MODE_10 | addr;
+			index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);
+		}
+
+	} else {
+		dev_err(denali->dev, "unable to send pipeline command\n");
+		status = -EIO;
+	}
+	return status;
+}
+
+/* reads OOB data from the device */
+static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	uint32_t irq_mask = INTR_STATUS__LOAD_COMP;
+	uint32_t irq_status, addr, cmd;
+
+	denali->page = page;
+
+	if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
+							DENALI_READ) == PASS) {
+		read_data_from_flash_mem(denali, buf, mtd->oobsize);
+
+		/*
+		 * wait for command to be accepted
+		 * can always use status0 bit as the
+		 * mask is identical for each bank.
+		 */
+		irq_status = wait_for_irq(denali, irq_mask);
+
+		if (irq_status == 0)
+			dev_err(denali->dev, "page on OOB timeout %d\n",
+					denali->page);
+
+		/*
+		 * We set the device back to MAIN_ACCESS here as I observed
+		 * instability with the controller if you do a block erase
+		 * and the last transaction was a SPARE_ACCESS. Block erase
+		 * is reliable (according to the MTD test infrastructure)
+		 * if you are in MAIN_ACCESS.
+		 */
+		addr = BANK(denali->flash_bank) | denali->page;
+		cmd = MODE_10 | addr;
+		index_addr(denali, cmd, MAIN_ACCESS);
+	}
+}
+
+/*
+ * this function examines buffers to see if they contain data that
+ * indicate that the buffer is part of an erased region of flash.
+ */
+static bool is_erased(uint8_t *buf, int len)
+{
+	int i;
+
+	for (i = 0; i < len; i++)
+		if (buf[i] != 0xFF)
+			return false;
+	return true;
+}
+#define ECC_SECTOR_SIZE 512
+
+#define ECC_SECTOR(x)	(((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
+#define ECC_BYTE(x)	(((x) & ECC_ERROR_ADDRESS__OFFSET))
+#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
+#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
+#define ECC_ERR_DEVICE(x)	(((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
+#define ECC_LAST_ERR(x)		((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
+
+static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
+		       uint32_t irq_status, unsigned int *max_bitflips)
+{
+	bool check_erased_page = false;
+	unsigned int bitflips = 0;
+
+       if (denali->have_hw_ecc_fixup &&
+           (irq_status & INTR_STATUS__ECC_UNCOR_ERR)) {
+               clear_interrupts(denali);
+               denali_set_intr_modes(denali, true);
+               check_erased_page = true;
+       } else if (irq_status & INTR_STATUS__ECC_ERR) {
+		/* read the ECC errors. we'll ignore them for now */
+		uint32_t err_address, err_correction_info, err_byte,
+			 err_sector, err_device, err_correction_value;
+		denali_set_intr_modes(denali, false);
+
+		do {
+			err_address = ioread32(denali->flash_reg +
+						ECC_ERROR_ADDRESS);
+			err_sector = ECC_SECTOR(err_address);
+			err_byte = ECC_BYTE(err_address);
+
+			err_correction_info = ioread32(denali->flash_reg +
+						ERR_CORRECTION_INFO);
+			err_correction_value =
+				ECC_CORRECTION_VALUE(err_correction_info);
+			err_device = ECC_ERR_DEVICE(err_correction_info);
+
+			if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
+				/*
+				 * If err_byte is larger than ECC_SECTOR_SIZE,
+				 * means error happened in OOB, so we ignore
+				 * it. It's no need for us to correct it
+				 * err_device is represented the NAND error
+				 * bits are happened in if there are more
+				 * than one NAND connected.
+				 */
+				if (err_byte < ECC_SECTOR_SIZE) {
+					int offset;
+
+					offset = (err_sector *
+							ECC_SECTOR_SIZE +
+							err_byte) *
+							denali->devnum +
+							err_device;
+					/* correct the ECC error */
+					buf[offset] ^= err_correction_value;
+					denali->mtd.ecc_stats.corrected++;
+					bitflips++;
+				}
+			} else {
+				/*
+				 * if the error is not correctable, need to
+				 * look at the page to see if it is an erased
+				 * page. if so, then it's not a real ECC error
+				 */
+				check_erased_page = true;
+			}
+		} while (!ECC_LAST_ERR(err_correction_info));
+		/*
+		 * Once handle all ecc errors, controller will trigger
+		 * a ECC_TRANSACTION_DONE interrupt, so here just wait
+		 * for a while for this interrupt
+		 */
+		while (!(read_interrupt_status(denali) &
+				INTR_STATUS__ECC_TRANSACTION_DONE))
+			/* cpu_relax(); */
+			barrier();
+		clear_interrupts(denali);
+		denali_set_intr_modes(denali, true);
+	}
+	*max_bitflips = bitflips;
+	return check_erased_page;
+}
+
+/* programs the controller to either enable/disable DMA transfers */
+static void denali_enable_dma(struct denali_nand_info *denali, bool en)
+{
+	iowrite32(en ? DMA_ENABLE__FLAG : 0, denali->flash_reg + DMA_ENABLE);
+	ioread32(denali->flash_reg + DMA_ENABLE);
+}
+
+/* setups the HW to perform the data DMA */
+static void denali_setup_dma(struct denali_nand_info *denali, int op)
+{
+	uint32_t mode;
+	const int page_count = 1;
+	uint32_t addr = (unsigned long)denali->buf.buf;
+
+	mode = MODE_10 | BANK(denali->flash_bank);
+
+	/* DMA is a four step process */
+
+	/* 1. setup transfer type and # of pages */
+	index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
+
+	/* 2. set memory high address bits 23:8 */
+	index_addr(denali, mode | ((addr >> 16) << 8), 0x2200);
+
+	/* 3. set memory low address bits 23:8 */
+	index_addr(denali, mode | ((addr & 0xffff) << 8), 0x2300);
+
+	/* 4. interrupt when complete, burst len = 64 bytes */
+	index_addr(denali, mode | 0x14000, 0x2400);
+}
+
+/*
+ * writes a page. user specifies type, and this function handles the
+ * configuration details.
+ */
+static int write_page(struct mtd_info *mtd, struct nand_chip *chip,
+			const uint8_t *buf, bool raw_xfer)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	dma_addr_t addr = (unsigned long)denali->buf.buf;
+	size_t size = denali->mtd.writesize + denali->mtd.oobsize;
+	uint32_t irq_status;
+	uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP |
+						INTR_STATUS__PROGRAM_FAIL;
+
+	/*
+	 * if it is a raw xfer, we want to disable ecc and send the spare area.
+	 * !raw_xfer - enable ecc
+	 * raw_xfer - transfer spare
+	 */
+	setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);
+
+	/* copy buffer into DMA buffer */
+	memcpy(denali->buf.buf, buf, mtd->writesize);
+
+	if (raw_xfer) {
+		/* transfer the data to the spare area */
+		memcpy(denali->buf.buf + mtd->writesize,
+			chip->oob_poi,
+			mtd->oobsize);
+	}
+
+	dma_sync_single_for_device(addr, size, DMA_TO_DEVICE);
+
+	clear_interrupts(denali);
+	denali_enable_dma(denali, true);
+
+	denali_setup_dma(denali, DENALI_WRITE);
+
+	/* wait for operation to complete */
+	irq_status = wait_for_irq(denali, irq_mask);
+
+	if (irq_status == 0) {
+		dev_err(denali->dev, "timeout on write_page (type = %d)\n",
+			raw_xfer);
+		denali->status = NAND_STATUS_FAIL;
+	}
+
+	denali_enable_dma(denali, false);
+	dma_sync_single_for_cpu(addr, size, DMA_TO_DEVICE);
+
+	return 0;
+}
+
+/* NAND core entry points */
+
+/*
+ * this is the callback that the NAND core calls to write a page. Since
+ * writing a page with ECC or without is similar, all the work is done
+ * by write_page above.
+ */
+static int denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
+				const uint8_t *buf, int oob_required)
+{
+	/*
+	 * for regular page writes, we let HW handle all the ECC
+	 * data written to the device.
+	 */
+	return write_page(mtd, chip, buf, false);
+}
+
+/*
+ * This is the callback that the NAND core calls to write a page without ECC.
+ * raw access is similar to ECC page writes, so all the work is done in the
+ * write_page() function above.
+ */
+static int denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+					const uint8_t *buf, int oob_required)
+{
+	/*
+	 * for raw page writes, we want to disable ECC and simply write
+	 * whatever data is in the buffer.
+	 */
+	return write_page(mtd, chip, buf, true);
+}
+
+static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+			    int page)
+{
+	return write_oob_data(mtd, chip->oob_poi, page);
+}
+
+static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+			   int page)
+{
+	read_oob_data(mtd, chip->oob_poi, page);
+
+	return 0;
+}
+
+static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
+			    uint8_t *buf, int oob_required, int page)
+{
+	unsigned int max_bitflips = 0;
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+
+	dma_addr_t addr = (unsigned long)denali->buf.buf;
+	size_t size = denali->mtd.writesize + denali->mtd.oobsize;
+
+	uint32_t irq_status;
+	uint32_t irq_mask = INTR_STATUS__ECC_TRANSACTION_DONE |
+			    INTR_STATUS__ECC_ERR;
+	bool check_erased_page = false;
+
+	if (page != denali->page) {
+		dev_err(denali->dev,
+			"IN %s: page %d is not equal to denali->page %d",
+			__func__, page, denali->page);
+		BUG();
+	}
+
+	setup_ecc_for_xfer(denali, true, false);
+
+	denali_enable_dma(denali, true);
+	dma_sync_single_for_device(addr, size, DMA_FROM_DEVICE);
+
+	clear_interrupts(denali);
+	denali_setup_dma(denali, DENALI_READ);
+
+	/* wait for operation to complete */
+	irq_status = wait_for_irq(denali, irq_mask);
+
+	dma_sync_single_for_cpu(addr, size, DMA_FROM_DEVICE);
+
+	memcpy(buf, denali->buf.buf, mtd->writesize);
+
+	check_erased_page = handle_ecc(denali, buf, irq_status, &max_bitflips);
+	denali_enable_dma(denali, false);
+
+	if (check_erased_page) {
+		if (denali->have_hw_ecc_fixup) {
+			/* When we have hw ecc fixup, don't check oob.
+			 * That code below looks jacked up anyway.  I mean,
+			 * look at it, wtf? */
+			if (!is_erased(buf, denali->mtd.writesize))
+				denali->mtd.ecc_stats.failed++;
+		} else {
+			read_oob_data(&denali->mtd, chip->oob_poi,
+				denali->page);
+
+			/* check ECC failures that may have occurred on
+			 * erased pages */
+			if (check_erased_page) {
+				if (!is_erased(buf, denali->mtd.writesize))
+					denali->mtd.ecc_stats.failed++;
+				if (!is_erased(buf, denali->mtd.oobsize))
+					denali->mtd.ecc_stats.failed++;
+			}
+		}
+	}
+	return max_bitflips;
+}
+
+static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+				uint8_t *buf, int oob_required, int page)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	dma_addr_t addr = (unsigned long)denali->buf.buf;
+	size_t size = denali->mtd.writesize + denali->mtd.oobsize;
+	uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;
+
+	if (page != denali->page) {
+		dev_err(denali->dev,
+			"IN %s: page %d is not equal to denali->page %d",
+			__func__, page, denali->page);
+		BUG();
+	}
+
+	setup_ecc_for_xfer(denali, false, true);
+	denali_enable_dma(denali, true);
+
+	dma_sync_single_for_device(addr, size, DMA_FROM_DEVICE);
+
+	clear_interrupts(denali);
+	denali_setup_dma(denali, DENALI_READ);
+
+	/* wait for operation to complete */
+	wait_for_irq(denali, irq_mask);
+
+	dma_sync_single_for_cpu(addr, size, DMA_FROM_DEVICE);
+
+	denali_enable_dma(denali, false);
+
+	memcpy(buf, denali->buf.buf, mtd->writesize);
+	memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);
+
+	return 0;
+}
+
+static uint8_t denali_read_byte(struct mtd_info *mtd)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	uint8_t result = 0xff;
+
+	if (denali->buf.head < denali->buf.tail)
+		result = denali->buf.buf[denali->buf.head++];
+
+	return result;
+}
+
+static void denali_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
+{
+	int i;
+	for (i = 0; i < len; i++)
+		buf[i] = denali_read_byte(mtd);
+}
+
+static void denali_select_chip(struct mtd_info *mtd, int chip)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+
+	denali->flash_bank = chip;
+}
+
+static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	int status = denali->status;
+
+	denali->status = 0;
+
+	return status;
+}
+
+static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
+			   int page)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	uint32_t addr, id;
+	uint32_t pages_per_block;
+	uint32_t block;
+	int i;
+
+	switch (cmd) {
+	case NAND_CMD_PAGEPROG:
+		break;
+	case NAND_CMD_STATUS:
+		read_status(denali);
+		break;
+	case NAND_CMD_READID:
+		reset_buf(denali);
+		/*
+		 * sometimes ManufactureId read from register is not right
+		 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
+		 * So here we send READID cmd to NAND insteand
+		 */
+		addr = MODE_11 | BANK(denali->flash_bank);
+		index_addr(denali, addr | 0, 0x90);
+		index_addr(denali, addr | 1, 0);
+		for (i = 0; i < 8; i++) {
+			index_addr_read_data(denali, addr | 2, &id);
+			write_byte_to_buf(denali, id);
+		}
+		break;
+	case NAND_CMD_PARAM:
+		reset_buf(denali);
+
+		/* turn on R/B interrupt */
+		denali_set_intr_modes(denali, false);
+		denali_irq_mask = DENALI_IRQ_ALL | INTR_STATUS__INT_ACT;
+		clear_interrupts(denali);
+		denali_irq_enable(denali, denali_irq_mask);
+		denali_set_intr_modes(denali, true);
+
+		addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
+		index_addr(denali, (uint32_t)addr | 0, cmd);
+		index_addr(denali, (uint32_t)addr | 1, col & 0xFF);
+		/* Wait tR time... */
+		udelay(25);
+		/* And then wait for R/B interrupt */
+		wait_for_irq(denali, INTR_STATUS__INT_ACT);
+
+		/* turn off R/B interrupt now */
+		denali_irq_mask = DENALI_IRQ_ALL;
+		denali_set_intr_modes(denali, false);
+		denali_irq_enable(denali, denali_irq_mask);
+		denali_set_intr_modes(denali, true);
+
+		for (i = 0; i < 256; i++) {
+			index_addr_read_data(denali,
+						(uint32_t)addr | 2,
+						&id);
+			write_byte_to_buf(denali, id);
+		}
+		break;
+	case NAND_CMD_READ0:
+	case NAND_CMD_SEQIN:
+		denali->page = page;
+		break;
+	case NAND_CMD_RESET:
+		reset_bank(denali);
+		break;
+	case NAND_CMD_READOOB:
+		/* TODO: Read OOB data */
+		break;
+	case NAND_CMD_UNLOCK1:
+		pages_per_block = mtd->erasesize / mtd->writesize;
+		block = page / pages_per_block;
+		addr = (uint32_t)MODE_10 | (block * pages_per_block);
+		index_addr(denali, addr, 0x10);
+		break;
+	case NAND_CMD_UNLOCK2:
+		pages_per_block = mtd->erasesize / mtd->writesize;
+		block = (page+pages_per_block-1) / pages_per_block;
+		addr = (uint32_t)MODE_10 | (block * pages_per_block);
+		index_addr(denali, addr, 0x11);
+		break;
+	case NAND_CMD_ERASE1:
+	case NAND_CMD_ERASE2:
+		addr = MODE_10 | BANK(denali->flash_bank) | page;
+		index_addr(denali, addr, 0x1);
+		break;
+	default:
+		pr_err(": unsupported command received 0x%x\n", cmd);
+		break;
+	}
+}
+/* end NAND core entry points */
+
+/* Initialization code to bring the device up to a known good state */
+static void denali_hw_init(struct denali_nand_info *denali)
+{
+	/*
+	 * tell driver how many bit controller will skip before
+	 * writing ECC code in OOB, this register may be already
+	 * set by firmware. So we read this value out.
+	 * if this value is 0, just let it be.
+	 */
+	denali->bbtskipbytes = ioread32(denali->flash_reg +
+						SPARE_AREA_SKIP_BYTES);
+	detect_max_banks(denali);
+	denali_nand_reset(denali);
+	iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
+	iowrite32(CHIP_EN_DONT_CARE__FLAG,
+			denali->flash_reg + CHIP_ENABLE_DONT_CARE);
+
+	iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
+
+	/* Should set value for these registers when init */
+	iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
+	iowrite32(1, denali->flash_reg + ECC_ENABLE);
+	denali_nand_timing_set(denali);
+	denali_irq_init(denali);
+}
+
+/*
+ * Althogh controller spec said SLC ECC is forceb to be 4bit,
+ * but denali controller in MRST only support 15bit and 8bit ECC
+ * correction
+ */
+#define ECC_8BITS	14
+static struct nand_ecclayout nand_8bit_oob = {
+	.eccbytes = 14,
+};
+
+#define ECC_15BITS	26
+static struct nand_ecclayout nand_15bit_oob = {
+	.eccbytes = 26,
+};
+
+/* initialize driver data structures */
+static void denali_drv_init(struct denali_nand_info *denali)
+{
+	denali->idx = 0;
+
+	/* indicate that MTD has not selected a valid bank yet */
+	denali->flash_bank = CHIP_SELECT_INVALID;
+
+	/* initialize our irq_status variable to indicate no interrupts */
+	denali->irq_status = 0;
+}
+
+int denali_init(struct denali_nand_info *denali)
+{
+	int ret = 0;
+	uint32_t val;
+
+	if (denali->platform == INTEL_CE4100) {
+		/*
+		 * Due to a silicon limitation, we can only support
+		 * ONFI timing mode 1 and below.
+		 */
+		if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
+			pr_err("Intel CE4100 only supports ONFI timing mode 1 or below\n");
+			return -EINVAL;
+		}
+	}
+
+	/* allocate a temporary buffer for nand_scan_ident() */
+	denali->buf.buf = kzalloc(PAGE_SIZE, GFP_DMA | GFP_KERNEL);
+	if (!denali->buf.buf)
+		return -ENOMEM;
+
+	denali->mtd.parent = denali->dev;
+	denali_hw_init(denali);
+	denali_drv_init(denali);
+
+	denali_set_intr_modes(denali, true);
+	denali->mtd.name = "denali-nand";
+	denali->mtd.priv = &denali->nand;
+
+	/* register the driver with the NAND core subsystem */
+	denali->nand.read_buf = denali_read_buf;
+	denali->nand.select_chip = denali_select_chip;
+	denali->nand.cmdfunc = denali_cmdfunc;
+	denali->nand.read_byte = denali_read_byte;
+	denali->nand.waitfunc = denali_waitfunc;
+
+	/*
+	 * scan for NAND devices attached to the controller
+	 * this is the first stage in a two step process to register
+	 * with the nand subsystem
+	 */
+	if (nand_scan_ident(&denali->mtd, denali->max_banks, NULL)) {
+		ret = -ENXIO;
+		goto failed_req_irq;
+	}
+
+	/* allocate the right size buffer now */
+	kfree(denali->buf.buf);
+	denali->buf.buf = kzalloc(denali->mtd.writesize + denali->mtd.oobsize,
+			     GFP_KERNEL);
+	if (!denali->buf.buf) {
+		ret = -ENOMEM;
+		goto failed_req_irq;
+	}
+
+	/*
+	 * support for multi nand
+	 * MTD known nothing about multi nand, so we should tell it
+	 * the real pagesize and anything necessery
+	 */
+	denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);
+	denali->nand.chipsize <<= (denali->devnum - 1);
+	denali->nand.page_shift += (denali->devnum - 1);
+	denali->nand.pagemask = (denali->nand.chipsize >>
+						denali->nand.page_shift) - 1;
+	denali->nand.bbt_erase_shift += (denali->devnum - 1);
+	denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift;
+	denali->nand.chip_shift += (denali->devnum - 1);
+	denali->mtd.writesize <<= (denali->devnum - 1);
+	denali->mtd.oobsize <<= (denali->devnum - 1);
+	denali->mtd.erasesize <<= (denali->devnum - 1);
+	denali->mtd.size = denali->nand.numchips * denali->nand.chipsize;
+	denali->bbtskipbytes *= denali->devnum;
+
+	/*
+	 * second stage of the NAND scan
+	 * this stage requires information regarding ECC and
+	 * bad block management.
+	 */
+
+	/* Bad block table description is set by nand framework,
+	   see nand_bbt.c */
+
+	denali->nand.bbt_options |= NAND_BBT_USE_FLASH;
+	denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
+	if (denali->have_hw_ecc_fixup) {
+		/* We have OOB support, so allow scan of BBT
+			and leave the OOB alone */
+		denali->nand.bbt_options |= NAND_BBT_NO_OOB;
+	} else {
+	/* skip the scan for now until we have OOB read and write support */
+		denali->nand.options |= NAND_SKIP_BBTSCAN;
+	}
+
+	/* no subpage writes on denali */
+	denali->nand.options |= NAND_NO_SUBPAGE_WRITE;
+
+	/*
+	 * Denali Controller only support 15bit and 8bit ECC in MRST,
+	 * so just let controller do 15bit ECC for MLC and 8bit ECC for
+	 * SLC if possible.
+	 * */
+	if (!nand_is_slc(&denali->nand) &&
+			(denali->mtd.oobsize > (denali->bbtskipbytes +
+			ECC_15BITS * (denali->mtd.writesize /
+			ECC_SECTOR_SIZE)))) {
+		/* if MLC OOB size is large enough, use 15bit ECC*/
+		denali->nand.ecc.strength = 15;
+		denali->nand.ecc.layout = &nand_15bit_oob;
+		denali->nand.ecc.bytes = ECC_15BITS;
+		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
+	} else if (denali->mtd.oobsize < (denali->bbtskipbytes +
+			ECC_8BITS * (denali->mtd.writesize /
+			ECC_SECTOR_SIZE))) {
+		pr_err("Your NAND chip OOB is not large enough to contain 8bit ECC correction codes");
+		goto failed_req_irq;
+	} else {
+		denali->nand.ecc.strength = 8;
+		denali->nand.ecc.layout = &nand_8bit_oob;
+		denali->nand.ecc.bytes = ECC_8BITS;
+		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
+	}
+
+	denali->nand.ecc.bytes *= denali->devnum;
+	denali->nand.ecc.strength *= denali->devnum;
+	denali->nand.ecc.layout->eccbytes *=
+		denali->mtd.writesize / ECC_SECTOR_SIZE;
+	denali->nand.ecc.layout->oobfree[0].offset =
+		denali->bbtskipbytes + denali->nand.ecc.layout->eccbytes;
+	denali->nand.ecc.layout->oobfree[0].length =
+		denali->mtd.oobsize - denali->nand.ecc.layout->eccbytes -
+		denali->bbtskipbytes;
+
+	/*
+	 * Let driver know the total blocks number and how many blocks
+	 * contained by each nand chip. blksperchip will help driver to
+	 * know how many blocks is taken by FW.
+	 */
+	denali->totalblks = denali->mtd.size >> denali->nand.phys_erase_shift;
+	denali->blksperchip = denali->totalblks / denali->nand.numchips;
+
+	/* override the default read operations */
+	denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum;
+	denali->nand.ecc.read_page = denali_read_page;
+	denali->nand.ecc.read_page_raw = denali_read_page_raw;
+	denali->nand.ecc.write_page = denali_write_page;
+	denali->nand.ecc.write_page_raw = denali_write_page_raw;
+	denali->nand.ecc.read_oob = denali_read_oob;
+	denali->nand.ecc.write_oob = denali_write_oob;
+
+	/* Occasionally the controller is in SPARE or MAIN+SPARE
+	   mode upon startup, and we want it to be MAIN only */
+	val = ioread32(denali->flash_reg + TRANSFER_MODE);
+	if (val != 0) {
+		int i;
+		dev_dbg(denali->dev,
+		"setting TRANSFER_MODE (%08x) back to MAIN only\n", val);
+		/* put all banks in MAIN mode, no SPARE */
+		iowrite32(0, denali->flash_reg + TRANSFER_SPARE_REG);
+		for (i = 0; i < 4; i++)
+			index_addr(denali, MODE_10 | BANK(i) | 1,
+				MAIN_ACCESS);
+	}
+
+	if (nand_scan_tail(&denali->mtd)) {
+		ret = -ENXIO;
+		goto failed_req_irq;
+	}
+
+	return add_mtd_nand_device(&denali->mtd, "nand");
+
+failed_req_irq:
+	denali_irq_cleanup(denali->irq, denali);
+
+	return ret;
+}
+EXPORT_SYMBOL(denali_init);
+
+
+MODULE_AUTHOR("Intel Corporation");
+MODULE_DESCRIPTION("");
+MODULE_LICENSE("GPL");
diff --git a/drivers/mtd/nand/nand_denali_dt.c b/drivers/mtd/nand/nand_denali_dt.c
new file mode 100644
index 0000000..09eb110
--- /dev/null
+++ b/drivers/mtd/nand/nand_denali_dt.c
@@ -0,0 +1,101 @@
+/*
+ * NAND Flash Controller Device Driver for DT
+ *
+ * Copyright © 2011, Picochip.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+ * more details.
+ */
+
+#include <common.h>
+#include <driver.h>
+#include <malloc.h>
+#include <init.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <mach/generic.h>
+#include <io.h>
+#include <of_mtd.h>
+#include <errno.h>
+
+#include <linux/clk.h>
+
+
+#include "denali.h"
+
+struct denali_dt {
+	struct denali_nand_info	denali;
+	struct clk		*clk;
+};
+
+
+static int denali_dt_probe(struct device_d *ofdev)
+{
+	struct denali_dt *dt;
+	struct denali_nand_info *denali;
+	int ret;
+
+	if (!IS_ENABLED(CONFIG_OFDEVICE))
+		return 1;
+
+	dt = kzalloc(sizeof(*dt), GFP_KERNEL);
+	if (!dt)
+		return -ENOMEM;
+	denali = &dt->denali;
+
+	denali->platform = DT;
+	denali->dev = ofdev;
+
+	denali->flash_mem = dev_request_mem_region(ofdev, 0);
+	if (IS_ERR(denali->flash_mem))
+		return PTR_ERR(denali->flash_mem);
+	denali->flash_reg = dev_request_mem_region(ofdev, 1);
+	if (IS_ERR(denali->flash_reg))
+		return PTR_ERR(denali->flash_reg);
+
+	dt->clk = clk_get(ofdev, NULL);
+	if (IS_ERR(dt->clk)) {
+		dev_err(ofdev, "no clk available\n");
+		return PTR_ERR(dt->clk);
+	}
+	clk_enable(dt->clk);
+
+	denali->have_hw_ecc_fixup = of_property_read_bool(ofdev->device_node,
+		"have-hw-ecc-fixup");
+
+	ret = denali_init(denali);
+	if (ret)
+		goto out_disable_clk;
+
+	return 0;
+
+out_disable_clk:
+	clk_disable(dt->clk);
+
+	return ret;
+}
+
+static __maybe_unused struct of_device_id denali_nand_compatible[] = {
+	{
+		.compatible = "denali,denali-nand-dt"
+	}, {
+		/* sentinel */
+	}
+};
+
+static struct driver_d denali_dt_driver = {
+	.name	= "denali-nand-dt",
+	.probe		= denali_dt_probe,
+	.of_compatible = DRV_OF_COMPAT(denali_nand_compatible)
+};
+device_platform_driver(denali_dt_driver);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Jamie Iles");
+MODULE_DESCRIPTION("DT driver for Denali NAND controller");
-- 
2.5.1




More information about the barebox mailing list