[PATCH v3 08/10] ARM: socfpga: Import sequencer code from generated uboot
Steffen Trumtrar
s.trumtrar at pengutronix.de
Mon Feb 9 02:47:49 PST 2015
This patch imports the sequencer code from uboot using the new script
scripts/socfpga_get_sequencer.
Signed-off-by: Markus Pargmann <mpa at pengutronix.de>
Signed-off-by: Steffen Trumtrar <s.trumtrar at pengutronix.de>
---
arch/arm/mach-socfpga/include/mach/sdram_io.h | 58 +
arch/arm/mach-socfpga/include/mach/sequencer.c | 5774 +++++++++++---------
arch/arm/mach-socfpga/include/mach/sequencer.h | 392 +-
.../mach-socfpga/include/mach/sequencer_defines.h | 6 +
arch/arm/mach-socfpga/include/mach/system.h | 37 +
arch/arm/mach-socfpga/include/mach/tclrpt.h | 38 +
6 files changed, 3614 insertions(+), 2691 deletions(-)
create mode 100755 arch/arm/mach-socfpga/include/mach/sdram_io.h
create mode 100644 arch/arm/mach-socfpga/include/mach/sequencer_defines.h
create mode 100755 arch/arm/mach-socfpga/include/mach/system.h
create mode 100755 arch/arm/mach-socfpga/include/mach/tclrpt.h
diff --git a/arch/arm/mach-socfpga/include/mach/sdram_io.h b/arch/arm/mach-socfpga/include/mach/sdram_io.h
new file mode 100755
index 000000000000..62698000f6d8
--- /dev/null
+++ b/arch/arm/mach-socfpga/include/mach/sdram_io.h
@@ -0,0 +1,58 @@
+/*
+ * Copyright Altera Corporation (C) 2012-2014. All rights reserved
+ *
+ * SPDX-License-Identifier: BSD-3-Clause
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * * Neither the name of Altera Corporation nor the
+ * names of its contributors may be used to endorse or promote products
+ * derived from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+ * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+ * DISCLAIMED. IN NO EVENT SHALL ALTERA CORPORATION BE LIABLE FOR ANY
+ * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+ * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+ * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
+ * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include <mach/sdram.h>
+
+#define MGR_SELECT_MASK 0xf8000
+
+#define APB_BASE_SCC_MGR SDR_PHYGRP_SCCGRP_ADDRESS
+#define APB_BASE_PHY_MGR SDR_PHYGRP_PHYMGRGRP_ADDRESS
+#define APB_BASE_RW_MGR SDR_PHYGRP_RWMGRGRP_ADDRESS
+#define APB_BASE_DATA_MGR SDR_PHYGRP_DATAMGRGRP_ADDRESS
+#define APB_BASE_REG_FILE SDR_PHYGRP_REGFILEGRP_ADDRESS
+#define APB_BASE_MMR SDR_CTRLGRP_ADDRESS
+
+#define __AVL_TO_APB(ADDR) \
+ ((((ADDR) & MGR_SELECT_MASK) == (BASE_PHY_MGR)) ? (APB_BASE_PHY_MGR) | (((ADDR) >> (14-6)) & (0x1<<6)) | ((ADDR) & 0x3f) : \
+ (((ADDR) & MGR_SELECT_MASK) == (BASE_RW_MGR)) ? (APB_BASE_RW_MGR) | ((ADDR) & 0x1fff) : \
+ (((ADDR) & MGR_SELECT_MASK) == (BASE_DATA_MGR)) ? (APB_BASE_DATA_MGR) | ((ADDR) & 0x7ff) : \
+ (((ADDR) & MGR_SELECT_MASK) == (BASE_SCC_MGR)) ? (APB_BASE_SCC_MGR) | ((ADDR) & 0xfff) : \
+ (((ADDR) & MGR_SELECT_MASK) == (BASE_REG_FILE)) ? (APB_BASE_REG_FILE) | ((ADDR) & 0x7ff) : \
+ (((ADDR) & MGR_SELECT_MASK) == (BASE_MMR)) ? (APB_BASE_MMR) | ((ADDR) & 0xfff) : \
+ -1)
+
+#define IOWR_32DIRECT(BASE, OFFSET, DATA) \
+ write_register(HPS_SDR_BASE, __AVL_TO_APB((uint32_t)((BASE) + (OFFSET))), DATA)
+
+#define IORD_32DIRECT(BASE, OFFSET) \
+ read_register(HPS_SDR_BASE, __AVL_TO_APB((uint32_t)((BASE) + (OFFSET))))
+ #define write_register(BASE, OFFSET, DATA) \
+ writel(DATA, ((BASE) + (OFFSET)))
+ #define read_register(BASE, OFFSET) \
+ readl((BASE) + (OFFSET))
+ #define HPS_SDR_BASE 0xffc20000
diff --git a/arch/arm/mach-socfpga/include/mach/sequencer.c b/arch/arm/mach-socfpga/include/mach/sequencer.c
index a8ba217344f9..18f0b114d91d 100644
--- a/arch/arm/mach-socfpga/include/mach/sequencer.c
+++ b/arch/arm/mach-socfpga/include/mach/sequencer.c
@@ -1,174 +1,319 @@
/*
- * Copyright Altera Corporation (C) 2012-2014. All rights reserved
- *
- * SPDX-License-Identifier: BSD-3-Clause
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are met:
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * * Neither the name of Altera Corporation nor the
- * names of its contributors may be used to endorse or promote products
- * derived from this software without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- * DISCLAIMED. IN NO EVENT SHALL ALTERA CORPORATION BE LIABLE FOR ANY
- * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
- * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
-
-#include <common.h>
-#include <io.h>
-#include <mach/socfpga-regs.h>
-#include <mach/sdram.h>
-#include <mach/sequencer.h>
+* Copyright Altera Corporation (C) 2012-2014. All rights reserved
+*
+* SPDX-License-Identifier: BSD-3-Clause
+*
+* Redistribution and use in source and binary forms, with or without
+* modification, are permitted provided that the following conditions are met:
+* * Redistributions of source code must retain the above copyright
+* notice, this list of conditions and the following disclaimer.
+* * Redistributions in binary form must reproduce the above copyright
+* notice, this list of conditions and the following disclaimer in the
+* documentation and/or other materials provided with the distribution.
+* * Neither the name of Altera Corporation nor the
+* names of its contributors may be used to endorse or promote products
+* derived from this software without specific prior written permission.
+*
+* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
+* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+* DISCLAIMED. IN NO EVENT SHALL ALTERA CORPORATION BE LIABLE FOR ANY
+* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
+* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*/
+
+#include "sequencer_defines.h"
+
+#include "system.h"
+#include "sdram_io.h"
+#include "sequencer.h"
+#include "tclrpt.h"
+
+/******************************************************************************
+ ******************************************************************************
+ ** NOTE: Special Rules for Globale Variables **
+ ** **
+ ** All global variables that are explicitly initialized (including **
+ ** explicitly initialized to zero), are only initialized once, during **
+ ** configuration time, and not again on reset. This means that they **
+ ** preserve their current contents across resets, which is needed for some **
+ ** special cases involving communication with external modules. In **
+ ** addition, this avoids paying the price to have the memory initialized, **
+ ** even for zeroed data, provided it is explicitly set to zero in the code, **
+ ** and doesn't rely on implicit initialization. **
+ ******************************************************************************
+ ******************************************************************************/
+
+// Temporary workaround to place the initial stack pointer at a safe offset from end
+#define STRINGIFY(s) STRINGIFY_STR(s)
+#define STRINGIFY_STR(s) #s
+asm(".global __alt_stack_pointer");
+asm("__alt_stack_pointer = " STRINGIFY(STACK_POINTER));
-static void IOWR_32DIRECT(uint32_t base, uint32_t ofs, uint32_t val)
-{
- writel(val, CYCLONE5_SDR_ADDRESS + base + ofs);
-}
+#include <mach/sdram.h>
-static uint32_t IORD_32DIRECT(uint32_t base, uint32_t ofs)
-{
- return readl(CYCLONE5_SDR_ADDRESS + base + ofs);
-}
+#define NEWVERSION_RDDESKEW 1
+#define NEWVERSION_WRDESKEW 1
+#define NEWVERSION_GW 1
+#define NEWVERSION_WL 1
+#define NEWVERSION_DQSEN 1
-/* Just to make the debugging code more uniform */
-#ifndef RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM
-#define RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM 0
-#endif
+// Just to make the debugging code more uniform
-#if HALF_RATE
-#define HALF_RATE_MODE 1
-#else
#define HALF_RATE_MODE 0
-#endif
-#if QUARTER_RATE
-#define QUARTER_RATE_MODE 1
-#else
#define QUARTER_RATE_MODE 0
-#endif
#define DELTA_D 1
-#define BTFLD_FMT "%x"
+// case:56390
+// VFIFO_CONTROL_WIDTH_PER_DQS is the number of VFIFOs actually instantiated per DQS. This is always one except:
+// AV QDRII where it is 2 for x18 and x18w2, and 4 for x36 and x36w2
+// RLDRAMII x36 and x36w2 where it is 2.
+// In 12.0sp1 we set this to 4 for all of the special cases above to keep it simple.
+// In 12.0sp2 or 12.1 this should get moved to generation and unified with the same constant used in the phy mgr
+
+#define VFIFO_CONTROL_WIDTH_PER_DQS 1
+
+// In order to reduce ROM size, most of the selectable calibration steps are
+// decided at compile time based on the user's calibration mode selection,
+// as captured by the STATIC_CALIB_STEPS selection below.
+//
+// However, to support simulation-time selection of fast simulation mode, where
+// we skip everything except the bare minimum, we need a few of the steps to
+// be dynamic. In those cases, we either use the DYNAMIC_CALIB_STEPS for the
+// check, which is based on the rtl-supplied value, or we dynamically compute the
+// value to use based on the dynamically-chosen calibration mode
+
+#define BTFLD_FMT "%lx"
+
+// For HPS running on actual hardware
+
+#define DLEVEL 0
+#ifdef HPS_HW_SERIAL_SUPPORT
+// space around comma is required for varargs macro to remove comma if args is empty
+#define DPRINT(level, fmt, args...) if (DLEVEL >= (level)) printf("SEQ.C: " fmt "\n" , ## args)
+#define IPRINT(fmt, args...) printf("SEQ.C: " fmt "\n" , ## args)
+#else
+#define DPRINT(level, fmt, args...)
+#define IPRINT(fmt, args...)
+#endif
+#define BFM_GBL_SET(field,value)
+#define BFM_GBL_GET(field) ((long unsigned int)0)
+#define BFM_STAGE(stage)
+#define BFM_INC_VFIFO
+#define COV(label)
+
+#define TRACE_FUNC(fmt, args...) DPRINT(1, "%s[%d]: " fmt, __func__, __LINE__ , ## args)
-#define STATIC_CALIB_STEPS (CALIB_SKIP_FULL_TEST)
+#define DYNAMIC_CALIB_STEPS (dyn_calib_steps)
-/* calibration steps requested by the rtl */
-static uint16_t dyn_calib_steps;
+#define STATIC_IN_RTL_SIM 0
-static uint32_t vfifo_idx;
+#define STATIC_SKIP_DELAY_LOOPS 0
-/*
- * To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
- * instead of static, we use boolean logic to select between
- * non-skip and skip values
- *
- * The mask is set to include all bits when not-skipping, but is
- * zero when skipping
- */
+#define STATIC_CALIB_STEPS (STATIC_IN_RTL_SIM | CALIB_SKIP_FULL_TEST | STATIC_SKIP_DELAY_LOOPS)
+
+// calibration steps requested by the rtl
+static uint16_t dyn_calib_steps = 0;
-static uint16_t skip_delay_mask; /* mask off bits when skipping/not-skipping */
+// To make CALIB_SKIP_DELAY_LOOPS a dynamic conditional option
+// instead of static, we use boolean logic to select between
+// non-skip and skip values
+//
+// The mask is set to include all bits when not-skipping, but is
+// zero when skipping
+
+static uint16_t skip_delay_mask = 0; // mask off bits when skipping/not-skipping
#define SKIP_DELAY_LOOP_VALUE_OR_ZERO(non_skip_value) \
((non_skip_value) & skip_delay_mask)
-static gbl_t *gbl;
-static param_t *param;
+// TODO: The skip group strategy is completely missing
-static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn,
- uint32_t write_group, uint32_t use_dm,
- uint32_t all_correct, t_btfld * bit_chk, uint32_t all_ranks);
+static gbl_t *gbl = 0;
+static param_t *param = 0;
-/*
- * This (TEST_SIZE) is used to test handling of large roms, to make
- * sure we are sizing things correctly
- * Note, the initialized data takes up twice the space in rom, since
- * there needs to be a copy with the initial value and a copy that is
- * written too, since on soft-reset, it needs to have the initial values
- * without reloading the memory from external sources
- */
-
-static void reg_file_set_group(uint32_t set_group)
+static uint32_t curr_shadow_reg = 0;
+
+static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, uint32_t write_group,
+ uint32_t use_dm, uint32_t all_correct,
+ t_btfld * bit_chk, uint32_t all_ranks);
+
+// This (TEST_SIZE) is used to test handling of large roms, to make
+// sure we are sizing things correctly
+// Note, the initialized data takes up twice the space in rom, since
+// there needs to be a copy with the initial value and a copy that is
+// written too, since on soft-reset, it needs to have the initial values
+// without reloading the memory from external sources
+
+// #define TEST_SIZE (6*1024)
+
+#ifdef TEST_SIZE
+
+#define PRE_POST_TEST_SIZE 3
+
+static unsigned int pre_test_size_mem[PRE_POST_TEST_SIZE] = { 1, 2, 3 };
+
+static unsigned int test_size_mem[TEST_SIZE / sizeof(unsigned int)] = { 100, 200, 300 };
+
+static unsigned int post_test_size_mem[PRE_POST_TEST_SIZE] = { 10, 20, 30 };
+
+static void write_test_mem(void)
+{
+ int i;
+
+ for (i = 0; i < PRE_POST_TEST_SIZE; i++) {
+ pre_test_size_mem[i] = (i + 1) * 10;
+ post_test_size_mem[i] = (i + 1);
+ }
+
+ for (i = 0; i < sizeof(test_size_mem) / sizeof(unsigned int); i++) {
+ test_size_mem[i] = i;
+ }
+
+}
+
+static int check_test_mem(int start)
+{
+ int i;
+
+ for (i = 0; i < PRE_POST_TEST_SIZE; i++) {
+ if (start) {
+ if (pre_test_size_mem[i] != (i + 1)) {
+ return 0;
+ }
+ if (post_test_size_mem[i] != (i + 1) * 10) {
+ return 0;
+ }
+ } else {
+ if (pre_test_size_mem[i] != (i + 1) * 10) {
+ return 0;
+ }
+ if (post_test_size_mem[i] != (i + 1)) {
+ return 0;
+ }
+ }
+ }
+
+ for (i = 0; i < sizeof(test_size_mem) / sizeof(unsigned int); i++) {
+ if (start) {
+ if (i < 3) {
+ if (test_size_mem[i] != (i + 1) * 100) {
+ return 0;
+ }
+ } else {
+ if (test_size_mem[i] != 0) {
+ return 0;
+ }
+ }
+ } else {
+ if (test_size_mem[i] != i) {
+ return 0;
+ }
+ }
+ }
+
+ return 1;
+}
+
+#endif // TEST_SIZE
+
+static void set_failing_group_stage(uint32_t group, uint32_t stage, uint32_t substage)
+{
+ if (gbl->error_stage == CAL_STAGE_NIL) {
+ gbl->error_substage = substage;
+ gbl->error_stage = stage;
+ gbl->error_group = group;
+
+ }
+
+}
+
+static inline void reg_file_set_group(uint32_t set_group)
{
- /* Read the current group and stage */
+ // Read the current group and stage
uint32_t cur_stage_group = IORD_32DIRECT(REG_FILE_CUR_STAGE, 0);
- /* Clear the group */
+ // Clear the group
cur_stage_group &= 0x0000FFFF;
- /* Set the group */
+ // Set the group
cur_stage_group |= (set_group << 16);
- /* Write the data back */
+ // Write the data back
IOWR_32DIRECT(REG_FILE_CUR_STAGE, 0, cur_stage_group);
}
-static void reg_file_set_stage(uint32_t set_stage)
+static inline void reg_file_set_stage(uint32_t set_stage)
{
- /* Read the current group and stage */
+ // Read the current group and stage
uint32_t cur_stage_group = IORD_32DIRECT(REG_FILE_CUR_STAGE, 0);
- /* Clear the stage and substage */
+ // Clear the stage and substage
cur_stage_group &= 0xFFFF0000;
- /* Set the stage */
+ // Set the stage
cur_stage_group |= (set_stage & 0x000000FF);
- /* Write the data back */
+ // Write the data back
IOWR_32DIRECT(REG_FILE_CUR_STAGE, 0, cur_stage_group);
}
-static void reg_file_set_sub_stage(uint32_t set_sub_stage)
+static inline void reg_file_set_sub_stage(uint32_t set_sub_stage)
{
- /* Read the current group and stage */
+ // Read the current group and stage
uint32_t cur_stage_group = IORD_32DIRECT(REG_FILE_CUR_STAGE, 0);
- /* Clear the substage */
+ // Clear the substage
cur_stage_group &= 0xFFFF00FF;
- /* Set the sub stage */
+ // Set the sub stage
cur_stage_group |= ((set_sub_stage << 8) & 0x0000FF00);
- /* Write the data back */
+ // Write the data back
IOWR_32DIRECT(REG_FILE_CUR_STAGE, 0, cur_stage_group);
}
+static inline uint32_t is_write_group_enabled_for_dm(uint32_t write_group)
+{
+ return 1;
+}
+
+static inline void select_curr_shadow_reg_using_rank(uint32_t rank)
+{
+}
+
static void initialize(void)
{
- /*
- * In Hard PHY this is a 2-bit control:
- * 0: AFI Mux Select
- * 1: DDIO Mux Select
- */
IOWR_32DIRECT(PHY_MGR_MUX_SEL, 0, 0x3);
- /* USER memory clock is not stable we begin initialization */
+ //USER memory clock is not stable we begin initialization
IOWR_32DIRECT(PHY_MGR_RESET_MEM_STBL, 0, 0);
- /* USER calibration status all set to zero */
+ //USER calibration status all set to zero
IOWR_32DIRECT(PHY_MGR_CAL_STATUS, 0, 0);
IOWR_32DIRECT(PHY_MGR_CAL_DEBUG_INFO, 0, 0);
- param->read_correct_mask_vg = ((t_btfld)1 << (RW_MGR_MEM_DQ_PER_READ_DQS / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
- param->write_correct_mask_vg = ((t_btfld)1 << (RW_MGR_MEM_DQ_PER_READ_DQS / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
- param->read_correct_mask = ((t_btfld)1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
- param->write_correct_mask = ((t_btfld)1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
+ if (((DYNAMIC_CALIB_STEPS) & CALIB_SKIP_ALL) != CALIB_SKIP_ALL) {
+ param->read_correct_mask_vg =
+ ((t_btfld) 1 <<
+ (RW_MGR_MEM_DQ_PER_READ_DQS / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
+ param->write_correct_mask_vg =
+ ((t_btfld) 1 <<
+ (RW_MGR_MEM_DQ_PER_READ_DQS / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS)) - 1;
+ param->read_correct_mask = ((t_btfld) 1 << RW_MGR_MEM_DQ_PER_READ_DQS) - 1;
+ param->write_correct_mask = ((t_btfld) 1 << RW_MGR_MEM_DQ_PER_WRITE_DQS) - 1;
+ param->dm_correct_mask =
+ ((t_btfld) 1 << (RW_MGR_MEM_DATA_WIDTH / RW_MGR_MEM_DATA_MASK_WIDTH)) - 1;
+ }
}
-#if DDR3
static void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode)
{
uint32_t odt_mask_0 = 0;
@@ -176,70 +321,93 @@ static void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode)
uint32_t cs_and_odt_mask;
if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) {
- if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) {
- /*
- * 1 Rank
- * Read: ODT = 0
- * Write: ODT = 1
- */
+
+ if (LRDIMM) {
+ // USER LRDIMMs have two cases to consider: single-slot and dual-slot.
+ // USER In single-slot, assert ODT for write only.
+ // USER In dual-slot, assert ODT for both slots for write,
+ // USER and on the opposite slot only for reads.
+ // USER
+ // USER Further complicating this is that both DIMMs have either 1 or 2 ODT
+ // USER inputs, which do the same thing (only one is actually required).
+ if ((RW_MGR_MEM_CHIP_SELECT_WIDTH / RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM) == 1) {
+ // USER Single-slot case
+ if (RW_MGR_MEM_ODT_WIDTH == 1) {
+ // USER Read = 0, Write = 1
+ odt_mask_0 = 0x0;
+ odt_mask_1 = 0x1;
+ } else if (RW_MGR_MEM_ODT_WIDTH == 2) {
+ // USER Read = 00, Write = 11
+ odt_mask_0 = 0x0;
+ odt_mask_1 = 0x3;
+ }
+ } else if ((RW_MGR_MEM_CHIP_SELECT_WIDTH / RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM)
+ == 2) {
+ // USER Dual-slot case
+ if (RW_MGR_MEM_ODT_WIDTH == 2) {
+ // USER Read: asserted for opposite slot, Write: asserted for both
+ odt_mask_0 = (rank < 2) ? 0x2 : 0x1;
+ odt_mask_1 = 0x3;
+ } else if (RW_MGR_MEM_ODT_WIDTH == 4) {
+ // USER Read: asserted for opposite slot, Write: asserted for both
+ odt_mask_0 = (rank < 2) ? 0xC : 0x3;
+ odt_mask_1 = 0xF;
+ }
+ }
+ } else if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) {
+ //USER 1 Rank
+ //USER Read: ODT = 0
+ //USER Write: ODT = 1
odt_mask_0 = 0x0;
odt_mask_1 = 0x1;
} else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) {
- /* 2 Ranks */
+ //USER 2 Ranks
if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1 ||
- (RDIMM && RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 2
- && RW_MGR_MEM_CHIP_SELECT_WIDTH == 4)) {
- /* - Dual-Slot , Single-Rank
- * (1 chip-select per DIMM)
- * OR
- * - RDIMM, 4 total CS (2 CS per DIMM)
- * means 2 DIMM
- * Since MEM_NUMBER_OF_RANKS is 2 they are
- * both single rank
- * with 2 CS each (special for RDIMM)
- * Read: Turn on ODT on the opposite rank
- * Write: Turn on ODT on all ranks
- */
+ (RDIMM && RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 2
+ && RW_MGR_MEM_CHIP_SELECT_WIDTH == 4)) {
+ //USER - Dual-Slot , Single-Rank (1 chip-select per DIMM)
+ //USER OR
+ //USER - RDIMM, 4 total CS (2 CS per DIMM) means 2 DIMM
+ //USER Since MEM_NUMBER_OF_RANKS is 2 they are both single rank
+ //USER with 2 CS each (special for RDIMM)
+ //USER Read: Turn on ODT on the opposite rank
+ //USER Write: Turn on ODT on all ranks
odt_mask_0 = 0x3 & ~(1 << rank);
odt_mask_1 = 0x3;
} else {
- /*
- * USER - Single-Slot , Dual-rank DIMMs
- * (2 chip-selects per DIMM)
- * USER Read: Turn on ODT off on all ranks
- * USER Write: Turn on ODT on active rank
- */
+ //USER - Single-Slot , Dual-rank DIMMs (2 chip-selects per DIMM)
+ //USER Read: Turn on ODT off on all ranks
+ //USER Write: Turn on ODT on active rank
odt_mask_0 = 0x0;
odt_mask_1 = 0x3 & (1 << rank);
}
- } else {
- /* 4 Ranks
- * Read:
- * ----------+-----------------------+
- * | |
- * | ODT |
- * Read From +-----------------------+
- * Rank | 3 | 2 | 1 | 0 |
- * ----------+-----+-----+-----+-----+
- * 0 | 0 | 1 | 0 | 0 |
- * 1 | 1 | 0 | 0 | 0 |
- * 2 | 0 | 0 | 0 | 1 |
- * 3 | 0 | 0 | 1 | 0 |
- * ----------+-----+-----+-----+-----+
- *
- * Write:
- * ----------+-----------------------+
- * | |
- * | ODT |
- * Write To +-----------------------+
- * Rank | 3 | 2 | 1 | 0 |
- * ----------+-----+-----+-----+-----+
- * 0 | 0 | 1 | 0 | 1 |
- * 1 | 1 | 0 | 1 | 0 |
- * 2 | 0 | 1 | 0 | 1 |
- * 3 | 1 | 0 | 1 | 0 |
- * ----------+-----+-----+-----+-----+
- */
+ } else {
+ //USER 4 Ranks
+ //USER Read:
+ //USER ----------+-----------------------+
+ //USER | |
+ //USER | ODT |
+ //USER Read From +-----------------------+
+ //USER Rank | 3 | 2 | 1 | 0 |
+ //USER ----------+-----+-----+-----+-----+
+ //USER 0 | 0 | 1 | 0 | 0 |
+ //USER 1 | 1 | 0 | 0 | 0 |
+ //USER 2 | 0 | 0 | 0 | 1 |
+ //USER 3 | 0 | 0 | 1 | 0 |
+ //USER ----------+-----+-----+-----+-----+
+ //USER
+ //USER Write:
+ //USER ----------+-----------------------+
+ //USER | |
+ //USER | ODT |
+ //USER Write To +-----------------------+
+ //USER Rank | 3 | 2 | 1 | 0 |
+ //USER ----------+-----+-----+-----+-----+
+ //USER 0 | 0 | 1 | 0 | 1 |
+ //USER 1 | 1 | 0 | 1 | 0 |
+ //USER 2 | 0 | 1 | 0 | 1 |
+ //USER 3 | 1 | 0 | 1 | 0 |
+ //USER ----------+-----+-----+-----+-----+
switch (rank) {
case 0:
odt_mask_0 = 0x4;
@@ -265,169 +433,72 @@ static void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode)
}
if (RDIMM && RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 2
- && RW_MGR_MEM_CHIP_SELECT_WIDTH == 4
- && RW_MGR_MEM_NUMBER_OF_RANKS == 2) {
- /* See RDIMM special case above */
+ && RW_MGR_MEM_CHIP_SELECT_WIDTH == 4 && RW_MGR_MEM_NUMBER_OF_RANKS == 2) {
+ //USER See RDIMM special case above
cs_and_odt_mask =
- (0xFF & ~(1 << (2*rank))) |
- ((0xFF & odt_mask_0) << 8) |
- ((0xFF & odt_mask_1) << 16);
+ (0xFF & ~(1 << (2 * rank))) |
+ ((0xFF & odt_mask_0) << 8) | ((0xFF & odt_mask_1) << 16);
+ } else if (LRDIMM) {
} else {
cs_and_odt_mask =
- (0xFF & ~(1 << rank)) |
- ((0xFF & odt_mask_0) << 8) |
- ((0xFF & odt_mask_1) << 16);
+ (0xFF & ~(1 << rank)) |
+ ((0xFF & odt_mask_0) << 8) | ((0xFF & odt_mask_1) << 16);
}
IOWR_32DIRECT(RW_MGR_SET_CS_AND_ODT_MASK, 0, cs_and_odt_mask);
}
-#else
-static void set_rank_and_odt_mask(uint32_t rank, uint32_t odt_mode)
-{
- uint32_t odt_mask_0 = 0;
- uint32_t odt_mask_1 = 0;
- uint32_t cs_and_odt_mask;
-
- if (odt_mode == RW_MGR_ODT_MODE_READ_WRITE) {
- if (RW_MGR_MEM_NUMBER_OF_RANKS == 1) {
- /*
- * 1 Rank
- * Read: ODT = 0
- * Write: ODT = 1
- */
- odt_mask_0 = 0x0;
- odt_mask_1 = 0x1;
- } else if (RW_MGR_MEM_NUMBER_OF_RANKS == 2) {
- /* 2 Ranks */
- if (RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM == 1) {
- /* USER - Dual-Slot ,
- * Single-Rank (1 chip-select per DIMM)
- * OR
- * - RDIMM, 4 total CS (2 CS per DIMM) means
- * 2 DIMM
- * Since MEM_NUMBER_OF_RANKS is 2 they are both
- * single rank with 2 CS each (special for
- * RDIMM)
- * Read/Write: Turn on ODT on the opposite rank
- */
- odt_mask_0 = 0x3 & ~(1 << rank);
- odt_mask_1 = 0x3 & ~(1 << rank);
- } else {
- /*
- * USER - Single-Slot , Dual-rank DIMMs
- * (2 chip-selects per DIMM)
- * Read: Turn on ODT off on all ranks
- * Write: Turn on ODT on active rank
- */
- odt_mask_0 = 0x0;
- odt_mask_1 = 0x3 & (1 << rank);
- }
- } else {
- /*
- * 4 Ranks
- * Read/Write:
- * -----------+-----------------------+
- * | |
- * | ODT |
- * Read/Write | |
- * From +-----------------------+
- * Rank | 3 | 2 | 1 | 0 |
- * -----------+-----+-----+-----+-----+
- * 0 | 0 | 1 | 0 | 0 |
- * 1 | 1 | 0 | 0 | 0 |
- * 2 | 0 | 0 | 0 | 1 |
- * 3 | 0 | 0 | 1 | 0 |
- * -----------+-----+-----+-----+-----+
- */
- switch (rank) {
- case 0:
- odt_mask_0 = 0x4;
- odt_mask_1 = 0x4;
- break;
- case 1:
- odt_mask_0 = 0x8;
- odt_mask_1 = 0x8;
- break;
- case 2:
- odt_mask_0 = 0x1;
- odt_mask_1 = 0x1;
- break;
- case 3:
- odt_mask_0 = 0x2;
- odt_mask_1 = 0x2;
- break;
- }
- }
- } else {
- odt_mask_0 = 0x0;
- odt_mask_1 = 0x0;
- }
- cs_and_odt_mask = (0xFF & ~(1 << rank)) |
- ((0xFF & odt_mask_0) << 8) |
- ((0xFF & odt_mask_1) << 16);
-
- IOWR_32DIRECT(RW_MGR_SET_CS_AND_ODT_MASK, 0, cs_and_odt_mask);
+//USER Given a rank, select the set of shadow registers that is responsible for the
+//USER delays of such rank, so that subsequent SCC updates will go to those shadow
+//USER registers.
+static void select_shadow_regs_for_update(uint32_t rank, uint32_t group,
+ uint32_t update_scan_chains)
+{
}
-#endif
static void scc_mgr_initialize(void)
{
- /*
- * Clear register file for HPS
- * 16 (2^4) is the size of the full register file in the scc mgr:
- * RFILE_DEPTH = log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS +
- * MEM_IF_READ_DQS_WIDTH - 1) + 1;
- */
+ // Clear register file for HPS
+ // 16 (2^4) is the size of the full register file in the scc mgr:
+ // RFILE_DEPTH = log2(MEM_DQ_PER_DQS + 1 + MEM_DM_PER_DQS + MEM_IF_READ_DQS_WIDTH - 1) + 1;
uint32_t i;
for (i = 0; i < 16; i++) {
- pr_debug("Clearing SCC RFILE index %u\n", i);
+ DPRINT(1, "Clearing SCC RFILE index %lu", i);
IOWR_32DIRECT(SCC_MGR_HHP_RFILE, i << 2, 0);
}
}
-static void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
+static inline void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay)
{
- ALTERA_ASSERT(read_group < RW_MGR_MEM_IF_READ_DQS_WIDTH);
-
- /* Load the setting in the SCC manager */
WRITE_SCC_DQS_IN_DELAY(read_group, delay);
+
}
-static void scc_mgr_set_dqs_io_in_delay(uint32_t write_group,
- uint32_t delay)
+static inline void scc_mgr_set_dqs_io_in_delay(uint32_t write_group, uint32_t delay)
{
- ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
-
- /* Load the setting in the SCC manager */
WRITE_SCC_DQS_IO_IN_DELAY(delay);
+
}
-static void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
+static inline void scc_mgr_set_dqs_en_phase(uint32_t read_group, uint32_t phase)
{
- ALTERA_ASSERT(read_group < RW_MGR_MEM_IF_READ_DQS_WIDTH);
-
- /* Load the setting in the SCC manager */
WRITE_SCC_DQS_EN_PHASE(read_group, phase);
+
}
-static void scc_mgr_set_dqs_en_phase_all_ranks (uint32_t read_group, uint32_t phase)
+static void scc_mgr_set_dqs_en_phase_all_ranks(uint32_t read_group, uint32_t phase)
{
uint32_t r;
uint32_t update_scan_chains;
- for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
- r += NUM_RANKS_PER_SHADOW_REG) {
- /*
- * USER although the h/w doesn't support different phases per
- * shadow register, for simplicity our scc manager modeling
- * keeps different phase settings per shadow reg, and it's
- * important for us to keep them in sync to match h/w.
- * for efficiency, the scan chain update should occur only
- * once to sr0.
- */
+ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) {
+ //USER although the h/w doesn't support different phases per shadow register,
+ //USER for simplicity our scc manager modeling keeps different phase settings per
+ //USER shadow reg, and it's important for us to keep them in sync to match h/w.
+ //USER for efficiency, the scan chain update should occur only once to sr0.
update_scan_chains = (r == 0) ? 1 : 0;
+ select_shadow_regs_for_update(r, read_group, update_scan_chains);
scc_mgr_set_dqs_en_phase(read_group, phase);
if (update_scan_chains) {
@@ -437,33 +508,25 @@ static void scc_mgr_set_dqs_en_phase_all_ranks (uint32_t read_group, uint32_t ph
}
}
-static void scc_mgr_set_dqdqs_output_phase(uint32_t write_group,
- uint32_t phase)
+static inline void scc_mgr_set_dqdqs_output_phase(uint32_t write_group, uint32_t phase)
{
- ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
-
- /* Load the setting in the SCC manager */
WRITE_SCC_DQDQS_OUT_PHASE(write_group, phase);
+
}
-static void scc_mgr_set_dqdqs_output_phase_all_ranks (uint32_t write_group,
- uint32_t phase)
+static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, uint32_t phase)
{
uint32_t r;
uint32_t update_scan_chains;
- for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
- r += NUM_RANKS_PER_SHADOW_REG) {
- /*
- * USER although the h/w doesn't support different phases per
- * shadow register, for simplicity our scc manager modeling
- * keeps different phase settings per shadow reg, and it's
- * important for us to keep them in sync to match h/w.
- * for efficiency, the scan chain update should occur only
- * once to sr0.
- */
+ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) {
+ //USER although the h/w doesn't support different phases per shadow register,
+ //USER for simplicity our scc manager modeling keeps different phase settings per
+ //USER shadow reg, and it's important for us to keep them in sync to match h/w.
+ //USER for efficiency, the scan chain update should occur only once to sr0.
update_scan_chains = (r == 0) ? 1 : 0;
+ select_shadow_regs_for_update(r, write_group, update_scan_chains);
scc_mgr_set_dqdqs_output_phase(write_group, phase);
if (update_scan_chains) {
@@ -473,32 +536,29 @@ static void scc_mgr_set_dqdqs_output_phase_all_ranks (uint32_t write_group,
}
}
-static void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
+static inline void scc_mgr_set_dqs_en_delay(uint32_t read_group, uint32_t delay)
{
- ALTERA_ASSERT(read_group < RW_MGR_MEM_IF_READ_DQS_WIDTH);
-
- /* Load the setting in the SCC manager */
WRITE_SCC_DQS_EN_DELAY(read_group, delay);
+
}
-static void scc_mgr_set_dqs_en_delay_all_ranks (uint32_t read_group, uint32_t delay)
+static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, uint32_t delay)
{
uint32_t r;
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) {
+ select_shadow_regs_for_update(r, read_group, 0);
+
scc_mgr_set_dqs_en_delay(read_group, delay);
IOWR_32DIRECT(SCC_MGR_DQS_ENA, 0, read_group);
- /*
- * In shadow register mode, the T11 settings are stored in
- * registers in the core, which are updated by the DQS_ENA
- * signals. Not issuing the SCC_MGR_UPD command allows us to
- * save lots of rank switching overhead, by calling
- * select_shadow_regs_for_update with update_scan_chains
- * set to 0.
- */
+ // In shadow register mode, the T11 settings are stored in registers
+ // in the core, which are updated by the DQS_ENA signals. Not issuing
+ // the SCC_MGR_UPD command allows us to save lots of rank switching
+ // overhead, by calling select_shadow_regs_for_update with update_scan_chains
+ // set to 0.
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
}
}
@@ -507,168 +567,157 @@ static void scc_mgr_set_oct_out1_delay(uint32_t write_group, uint32_t delay)
{
uint32_t read_group;
- ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
-
- /*
- * Load the setting in the SCC manager
- * Although OCT affects only write data, the OCT delay is controlled
- * by the DQS logic block which is instantiated once per read group.
- * For protocols where a write group consists of multiple read groups,
- * the setting must be set multiple times.
- */
- for (read_group = write_group * RW_MGR_NUM_DQS_PER_WRITE_GROUP;
- read_group < (write_group + 1) * RW_MGR_NUM_DQS_PER_WRITE_GROUP;
- ++read_group)
+ // Load the setting in the SCC manager
+ // Although OCT affects only write data, the OCT delay is controlled by the DQS logic block
+ // which is instantiated once per read group. For protocols where a write group consists
+ // of multiple read groups, the setting must be set multiple times.
+ for (read_group =
+ write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
+ read_group <
+ (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
+ ++read_group) {
+
WRITE_SCC_OCT_OUT1_DELAY(read_group, delay);
+ }
+
}
static void scc_mgr_set_oct_out2_delay(uint32_t write_group, uint32_t delay)
{
uint32_t read_group;
- ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
-
- /*
- * Load the setting in the SCC manager
- * Although OCT affects only write data, the OCT delay is controlled
- * by the DQS logic block which is instantiated once per read group.
- * For protocols where a write group consists
- * of multiple read groups, the setting must be set multiple times.
- */
- for (read_group = write_group * RW_MGR_NUM_DQS_PER_WRITE_GROUP;
- read_group < (write_group + 1) * RW_MGR_NUM_DQS_PER_WRITE_GROUP;
- ++read_group)
+ // Load the setting in the SCC manager
+ // Although OCT affects only write data, the OCT delay is controlled by the DQS logic block
+ // which is instantiated once per read group. For protocols where a write group consists
+ // of multiple read groups, the setting must be set multiple times.
+ for (read_group =
+ write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
+ read_group <
+ (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
+ ++read_group) {
+
WRITE_SCC_OCT_OUT2_DELAY(read_group, delay);
+ }
+
+}
+
+static inline void scc_mgr_set_dqs_bypass(uint32_t write_group, uint32_t bypass)
+{
+ // Load the setting in the SCC manager
+ WRITE_SCC_DQS_BYPASS(write_group, bypass);
}
-static void scc_mgr_set_dq_out1_delay(uint32_t write_group,
- uint32_t dq_in_group, uint32_t delay)
+static inline void scc_mgr_set_dq_out1_delay(uint32_t write_group, uint32_t dq_in_group,
+ uint32_t delay)
{
- ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
- ALTERA_ASSERT(dq < RW_MGR_MEM_DATA_WIDTH);
- /* Load the setting in the SCC manager */
+ // Load the setting in the SCC manager
WRITE_SCC_DQ_OUT1_DELAY(dq_in_group, delay);
+
}
-static void scc_mgr_set_dq_out2_delay(uint32_t write_group,
- uint32_t dq_in_group, uint32_t delay)
+static inline void scc_mgr_set_dq_out2_delay(uint32_t write_group, uint32_t dq_in_group,
+ uint32_t delay)
{
- ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
- ALTERA_ASSERT(dq < RW_MGR_MEM_DATA_WIDTH);
- /* Load the setting in the SCC manager */
+ // Load the setting in the SCC manager
WRITE_SCC_DQ_OUT2_DELAY(dq_in_group, delay);
+
}
-static void scc_mgr_set_dq_in_delay(uint32_t write_group,
- uint32_t dq_in_group, uint32_t delay)
+static inline void scc_mgr_set_dq_in_delay(uint32_t write_group, uint32_t dq_in_group,
+ uint32_t delay)
{
- ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
- ALTERA_ASSERT(dq < RW_MGR_MEM_DATA_WIDTH);
- /* Load the setting in the SCC manager */
+ // Load the setting in the SCC manager
WRITE_SCC_DQ_IN_DELAY(dq_in_group, delay);
+
+}
+
+static inline void scc_mgr_set_dq_bypass(uint32_t write_group, uint32_t dq_in_group,
+ uint32_t bypass)
+{
+ // Load the setting in the SCC manager
+ WRITE_SCC_DQ_BYPASS(dq_in_group, bypass);
}
-static void scc_mgr_set_hhp_extras(void)
+static inline void scc_mgr_set_rfifo_mode(uint32_t write_group, uint32_t dq_in_group, uint32_t mode)
{
- /*
- * Load the fixed setting in the SCC manager
- * bits: 0:0 = 1'b1 - dqs bypass
- * bits: 1:1 = 1'b1 - dq bypass
- * bits: 4:2 = 3'b001 - rfifo_mode
- * bits: 6:5 = 2'b01 - rfifo clock_select
- * bits: 7:7 = 1'b0 - separate gating from ungating setting
- * bits: 8:8 = 1'b0 - separate OE from Output delay setting
- */
- uint32_t value = (0<<8) | (0<<7) | (1<<5) | (1<<2) | (1<<1) | (1<<0);
+ // Load the setting in the SCC manager
+ WRITE_SCC_RFIFO_MODE(dq_in_group, mode);
+}
+
+static inline void scc_mgr_set_hhp_extras(void)
+{
+ // Load the fixed setting in the SCC manager
+ // bits: 0:0 = 1'b1 - dqs bypass
+ // bits: 1:1 = 1'b1 - dq bypass
+ // bits: 4:2 = 3'b001 - rfifo_mode
+ // bits: 6:5 = 2'b01 - rfifo clock_select
+ // bits: 7:7 = 1'b0 - separate gating from ungating setting
+ // bits: 8:8 = 1'b0 - separate OE from Output delay setting
+ uint32_t value = (0 << 8) | (0 << 7) | (1 << 5) | (1 << 2) | (1 << 1) | (1 << 0);
WRITE_SCC_HHP_EXTRAS(value);
}
-static void scc_mgr_set_dqs_out1_delay(uint32_t write_group,
- uint32_t delay)
+static inline void scc_mgr_set_hhp_dqse_map(void)
{
- ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
+ // Load the fixed setting in the SCC manager
+ WRITE_SCC_HHP_DQSE_MAP(0);
+}
- /* Load the setting in the SCC manager */
+static inline void scc_mgr_set_dqs_out1_delay(uint32_t write_group, uint32_t delay)
+{
WRITE_SCC_DQS_IO_OUT1_DELAY(delay);
+
}
-static void scc_mgr_set_dqs_out2_delay(uint32_t write_group, uint32_t delay)
+static inline void scc_mgr_set_dqs_out2_delay(uint32_t write_group, uint32_t delay)
{
- ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
-
- /* Load the setting in the SCC manager */
WRITE_SCC_DQS_IO_OUT2_DELAY(delay);
+
}
-static void scc_mgr_set_dm_out1_delay(uint32_t write_group,
- uint32_t dm, uint32_t delay)
+static inline void scc_mgr_set_dm_out1_delay(uint32_t write_group, uint32_t dm, uint32_t delay)
{
- ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
- ALTERA_ASSERT(dm < RW_MGR_NUM_DM_PER_WRITE_GROUP);
-
- /* Load the setting in the SCC manager */
WRITE_SCC_DM_IO_OUT1_DELAY(dm, delay);
}
-static void scc_mgr_set_dm_out2_delay(uint32_t write_group, uint32_t dm,
- uint32_t delay)
+static inline void scc_mgr_set_dm_out2_delay(uint32_t write_group, uint32_t dm, uint32_t delay)
{
- ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
- ALTERA_ASSERT(dm < RW_MGR_NUM_DM_PER_WRITE_GROUP);
-
- /* Load the setting in the SCC manager */
WRITE_SCC_DM_IO_OUT2_DELAY(dm, delay);
}
-static void scc_mgr_set_dm_in_delay(uint32_t write_group,
- uint32_t dm, uint32_t delay)
+static inline void scc_mgr_set_dm_in_delay(uint32_t write_group, uint32_t dm, uint32_t delay)
{
- ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
- ALTERA_ASSERT(dm < RW_MGR_NUM_DM_PER_WRITE_GROUP);
-
- /* Load the setting in the SCC manager */
WRITE_SCC_DM_IO_IN_DELAY(dm, delay);
}
-static void scc_mgr_load_dqs_for_write_group (uint32_t write_group)
+static inline void scc_mgr_set_dm_bypass(uint32_t write_group, uint32_t dm, uint32_t bypass)
{
- uint32_t read_group;
-
- /*
- * Although OCT affects only write data, the OCT delay is controlled
- * by the DQS logic block which is instantiated once per read group.
- * For protocols where a write group consists of multiple read groups,
- * the setting must be scanned multiple times.
- */
- for (read_group = write_group * RW_MGR_NUM_DQS_PER_WRITE_GROUP;
- read_group < (write_group + 1) * RW_MGR_NUM_DQS_PER_WRITE_GROUP;
- ++read_group)
- IOWR_32DIRECT(SCC_MGR_DQS_ENA, 0, read_group);
+ // Load the setting in the SCC manager
+ WRITE_SCC_DM_BYPASS(dm, bypass);
}
-/*
- * USER Zero all DQS config
- * TODO: maybe rename to scc_mgr_zero_dqs_config (or something)
- */
-static void scc_mgr_zero_all (void)
+//USER Zero all DQS config
+// TODO: maybe rename to scc_mgr_zero_dqs_config (or something)
+static void scc_mgr_zero_all(void)
{
uint32_t i, r;
- /*
- * USER Zero all DQS config settings, across all groups and all
- * shadow registers
- */
+ //USER Zero all DQS config settings, across all groups and all shadow registers
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) {
+ // Strictly speaking this should be called once per group to make
+ // sure each group's delay chain is refreshed from the SCC register file,
+ // but since we're resetting all delay chains anyway, we can save some
+ // runtime by calling select_shadow_regs_for_update just once to switch
+ // rank.
+ select_shadow_regs_for_update(r, 0, 1);
+
for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
- /*
- * The phases actually don't exist on a per-rank basis,
- * but there's no harm updating them several times, so
- * let's keep the code simple.
- */
+ // The phases actually don't exist on a per-rank basis, but there's
+ // no harm updating them several times, so let's keep the code simple.
scc_mgr_set_dqs_bus_in_delay(i, IO_DQS_IN_RESERVE);
scc_mgr_set_dqs_en_phase(i, 0);
scc_mgr_set_dqs_en_delay(i, 0);
@@ -676,235 +725,256 @@ static void scc_mgr_zero_all (void)
for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
scc_mgr_set_dqdqs_output_phase(i, 0);
-#if ARRIAV || CYCLONEV
- /* av/cv don't have out2 */
+ // av/cv don't have out2
scc_mgr_set_oct_out1_delay(i, IO_DQS_OUT_RESERVE);
-#else
- scc_mgr_set_oct_out1_delay(i, 0);
- scc_mgr_set_oct_out2_delay(i, IO_DQS_OUT_RESERVE);
-#endif
}
- /* multicast to all DQS group enables */
+ //USER multicast to all DQS group enables
IOWR_32DIRECT(SCC_MGR_DQS_ENA, 0, 0xff);
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
}
}
-static void scc_set_bypass_mode(uint32_t write_group)
+static void scc_set_bypass_mode(uint32_t write_group, uint32_t mode)
{
- /* only need to set once for all groups, pins, dq, dqs, dm */
+ // mode = 0 : Do NOT bypass - Half Rate Mode
+ // mode = 1 : Bypass - Full Rate Mode
+
+ // only need to set once for all groups, pins, dq, dqs, dm
if (write_group == 0) {
- pr_debug("Setting HHP Extras\n");
+ DPRINT(1, "Setting HHP Extras");
scc_mgr_set_hhp_extras();
- pr_debug("Done Setting HHP Extras\n");
+ DPRINT(1, "Done Setting HHP Extras");
}
- /* multicast to all DQ enables */
+ //USER multicast to all DQ enables
IOWR_32DIRECT(SCC_MGR_DQ_ENA, 0, 0xff);
IOWR_32DIRECT(SCC_MGR_DM_ENA, 0, 0xff);
- /* update current DQS IO enable */
+ //USER update current DQS IO enable
IOWR_32DIRECT(SCC_MGR_DQS_IO_ENA, 0, 0);
- /* update the DQS logic */
+ //USER update the DQS logic
IOWR_32DIRECT(SCC_MGR_DQS_ENA, 0, write_group);
- /* hit update */
+ //USER hit update
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
}
-static void scc_mgr_zero_group (uint32_t write_group, uint32_t test_begin,
- int32_t out_only)
+// Moving up to avoid warnings
+static void scc_mgr_load_dqs_for_write_group(uint32_t write_group)
+{
+ uint32_t read_group;
+
+ // Although OCT affects only write data, the OCT delay is controlled by the DQS logic block
+ // which is instantiated once per read group. For protocols where a write group consists
+ // of multiple read groups, the setting must be scanned multiple times.
+ for (read_group =
+ write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
+ read_group <
+ (write_group + 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
+ ++read_group) {
+
+ IOWR_32DIRECT(SCC_MGR_DQS_ENA, 0, read_group);
+ }
+}
+
+static void scc_mgr_zero_group(uint32_t write_group, uint32_t test_begin, int32_t out_only)
{
uint32_t i, r;
- for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r +=
- NUM_RANKS_PER_SHADOW_REG) {
+ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) {
+
+ select_shadow_regs_for_update(r, write_group, 1);
- /* Zero all DQ config settings */
+ //USER Zero all DQ config settings
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
scc_mgr_set_dq_out1_delay(write_group, i, 0);
- scc_mgr_set_dq_out2_delay(write_group, i,
- IO_DQ_OUT_RESERVE);
+ scc_mgr_set_dq_out2_delay(write_group, i, IO_DQ_OUT_RESERVE);
if (!out_only) {
scc_mgr_set_dq_in_delay(write_group, i, 0);
}
}
- /* multicast to all DQ enables */
+ //USER multicast to all DQ enables
IOWR_32DIRECT(SCC_MGR_DQ_ENA, 0, 0xff);
- /* Zero all DM config settings */
+ //USER Zero all DM config settings
for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
if (!out_only) {
- /* Do we really need this? */
+ // Do we really need this?
scc_mgr_set_dm_in_delay(write_group, i, 0);
}
scc_mgr_set_dm_out1_delay(write_group, i, 0);
- scc_mgr_set_dm_out2_delay(write_group, i,
- IO_DM_OUT_RESERVE);
+ scc_mgr_set_dm_out2_delay(write_group, i, IO_DM_OUT_RESERVE);
}
- /* multicast to all DM enables */
+ //USER multicast to all DM enables
IOWR_32DIRECT(SCC_MGR_DM_ENA, 0, 0xff);
- /* zero all DQS io settings */
+ //USER zero all DQS io settings
if (!out_only) {
scc_mgr_set_dqs_io_in_delay(write_group, 0);
}
-#if ARRIAV || CYCLONEV
- /* av/cv don't have out2 */
+ // av/cv don't have out2
scc_mgr_set_dqs_out1_delay(write_group, IO_DQS_OUT_RESERVE);
scc_mgr_set_oct_out1_delay(write_group, IO_DQS_OUT_RESERVE);
scc_mgr_load_dqs_for_write_group(write_group);
-#else
- scc_mgr_set_dqs_out1_delay(write_group, 0);
- scc_mgr_set_dqs_out2_delay(write_group, IO_DQS_OUT_RESERVE);
- scc_mgr_set_oct_out1_delay(write_group, 0);
- scc_mgr_set_oct_out2_delay(write_group, IO_DQS_OUT_RESERVE);
- scc_mgr_load_dqs_for_write_group(write_group);
-#endif
- /* multicast to all DQS IO enables (only 1) */
+ //USER multicast to all DQS IO enables (only 1)
IOWR_32DIRECT(SCC_MGR_DQS_IO_ENA, 0, 0);
-#if USE_SHADOW_REGS
- /*
- * in shadow-register mode, SCC_UPDATE is done on a per-group basis
- * unless we explicitly ask for a multicast via the group counter
- */
- IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
-#endif
- /* hit update to zero everything */
+ //USER hit update to zero everything
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
}
}
-/* load up dqs config settings */
+//USER load up dqs config settings
-static void scc_mgr_load_dqs (uint32_t dqs)
+static void scc_mgr_load_dqs(uint32_t dqs)
{
IOWR_32DIRECT(SCC_MGR_DQS_ENA, 0, dqs);
}
-/* load up dqs io config settings */
+//USER load up dqs io config settings
-static void scc_mgr_load_dqs_io (void)
+static void scc_mgr_load_dqs_io(void)
{
IOWR_32DIRECT(SCC_MGR_DQS_IO_ENA, 0, 0);
}
-/* load up dq config settings */
+//USER load up dq config settings
-static void scc_mgr_load_dq (uint32_t dq_in_group)
+static void scc_mgr_load_dq(uint32_t dq_in_group)
{
IOWR_32DIRECT(SCC_MGR_DQ_ENA, 0, dq_in_group);
}
-/* load up dm config settings */
+//USER load up dm config settings
-static void scc_mgr_load_dm (uint32_t dm)
+static void scc_mgr_load_dm(uint32_t dm)
{
IOWR_32DIRECT(SCC_MGR_DM_ENA, 0, dm);
}
-/* apply and load a particular input delay for the DQ pins in a group */
-/* group_bgn is the index of the first dq pin (in the write group) */
+//USER apply and load a particular input delay for the DQ pins in a group
+//USER group_bgn is the index of the first dq pin (in the write group)
-static void scc_mgr_apply_group_dq_in_delay (uint32_t write_group,
- uint32_t group_bgn, uint32_t delay)
+static void scc_mgr_apply_group_dq_in_delay(uint32_t write_group, uint32_t group_bgn,
+ uint32_t delay)
{
uint32_t i, p;
for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
scc_mgr_set_dq_in_delay(write_group, p, delay);
- scc_mgr_load_dq (p);
+ scc_mgr_load_dq(p);
}
}
-/* apply and load a particular output delay for the DQ pins in a group */
+//USER apply and load a particular output delay for the DQ pins in a group
-static void scc_mgr_apply_group_dq_out1_delay (uint32_t write_group, uint32_t group_bgn,
- uint32_t delay1)
+static void scc_mgr_apply_group_dq_out1_delay(uint32_t write_group, uint32_t group_bgn,
+ uint32_t delay1)
{
uint32_t i, p;
for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
scc_mgr_set_dq_out1_delay(write_group, i, delay1);
- scc_mgr_load_dq (i);
+ scc_mgr_load_dq(i);
}
}
-/* apply and load a particular output delay for the DM pins in a group */
+//USER apply and load a particular output delay for the DM pins in a group
-static void scc_mgr_apply_group_dm_out1_delay (uint32_t write_group, uint32_t delay1)
+static void scc_mgr_apply_group_dm_out1_delay(uint32_t write_group, uint32_t delay1)
{
uint32_t i;
for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
scc_mgr_set_dm_out1_delay(write_group, i, delay1);
- scc_mgr_load_dm (i);
+ scc_mgr_load_dm(i);
}
}
-
-/* apply and load delay on both DQS and OCT out1 */
-static void scc_mgr_apply_group_dqs_io_and_oct_out1 (uint32_t write_group, uint32_t delay)
+//USER apply and load delay on both DQS and OCT out1
+static void scc_mgr_apply_group_dqs_io_and_oct_out1(uint32_t write_group, uint32_t delay)
{
scc_mgr_set_dqs_out1_delay(write_group, delay);
- scc_mgr_load_dqs_io ();
+ scc_mgr_load_dqs_io();
scc_mgr_set_oct_out1_delay(write_group, delay);
- scc_mgr_load_dqs_for_write_group (write_group);
+ scc_mgr_load_dqs_for_write_group(write_group);
+}
+
+//USER set delay on both DQS and OCT out1 by incrementally changing
+//USER the settings one dtap at a time towards the target value, to avoid
+//USER breaking the lock of the DLL/PLL on the memory device.
+static void scc_mgr_set_group_dqs_io_and_oct_out1_gradual(uint32_t write_group, uint32_t delay)
+{
+ uint32_t d = READ_SCC_DQS_IO_OUT1_DELAY();
+
+ while (d > delay) {
+ --d;
+ scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, d);
+ IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+ if (QDRII) {
+ rw_mgr_mem_dll_lock_wait();
+ }
+ }
+ while (d < delay) {
+ ++d;
+ scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, d);
+ IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+ if (QDRII) {
+ rw_mgr_mem_dll_lock_wait();
+ }
+ }
}
-/* apply a delay to the entire output side: DQ, DM, DQS, OCT */
+//USER apply a delay to the entire output side: DQ, DM, DQS, OCT
-static void scc_mgr_apply_group_all_out_delay (uint32_t write_group,
- uint32_t group_bgn, uint32_t delay)
+static void scc_mgr_apply_group_all_out_delay(uint32_t write_group, uint32_t group_bgn,
+ uint32_t delay)
{
- /* dq shift */
+ //USER dq shift
- scc_mgr_apply_group_dq_out1_delay (write_group, group_bgn, delay);
+ scc_mgr_apply_group_dq_out1_delay(write_group, group_bgn, delay);
- /* dm shift */
+ //USER dm shift
- scc_mgr_apply_group_dm_out1_delay (write_group, delay);
+ scc_mgr_apply_group_dm_out1_delay(write_group, delay);
- /* dqs and oct shift */
+ //USER dqs and oct shift
- scc_mgr_apply_group_dqs_io_and_oct_out1 (write_group, delay);
+ scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, delay);
}
-/*
- * USER apply a delay to the entire output side (DQ, DM, DQS, OCT)
- * and to all ranks
- */
-static void scc_mgr_apply_group_all_out_delay_all_ranks (uint32_t write_group,
- uint32_t group_bgn, uint32_t delay)
+//USER apply a delay to the entire output side (DQ, DM, DQS, OCT) and to all ranks
+static void scc_mgr_apply_group_all_out_delay_all_ranks(uint32_t write_group, uint32_t group_bgn,
+ uint32_t delay)
{
uint32_t r;
- for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
- r += NUM_RANKS_PER_SHADOW_REG) {
+ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) {
+
+ select_shadow_regs_for_update(r, write_group, 1);
- scc_mgr_apply_group_all_out_delay (write_group, group_bgn, delay);
+ scc_mgr_apply_group_all_out_delay(write_group, group_bgn, delay);
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
}
}
-/* apply a delay to the entire output side: DQ, DM, DQS, OCT */
+//USER apply a delay to the entire output side: DQ, DM, DQS, OCT
-static void scc_mgr_apply_group_all_out_delay_add (uint32_t write_group,
- uint32_t group_bgn, uint32_t delay)
+static void scc_mgr_apply_group_all_out_delay_add(uint32_t write_group, uint32_t group_bgn,
+ uint32_t delay)
{
uint32_t i, p, new_delay;
- /* dq shift */
+ //USER dq shift
for (i = 0, p = group_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
@@ -912,70 +982,63 @@ static void scc_mgr_apply_group_all_out_delay_add (uint32_t write_group,
new_delay += delay;
if (new_delay > IO_IO_OUT2_DELAY_MAX) {
- pr_debug("%s(%u, %u, %u) DQ[%u,%u]: %u >"
- " %u => %u\n", __func__, write_group,
- group_bgn, delay, i, p,
- new_delay,
- IO_IO_OUT2_DELAY_MAX,
- IO_IO_OUT2_DELAY_MAX);
+ DPRINT(1, "%s(%lu, %lu, %lu) DQ[%lu,%lu]: %lu > %lu => %lu",
+ __func__, write_group, group_bgn, delay, i, p,
+ new_delay, (long unsigned int)IO_IO_OUT2_DELAY_MAX,
+ (long unsigned int)IO_IO_OUT2_DELAY_MAX);
new_delay = IO_IO_OUT2_DELAY_MAX;
}
scc_mgr_set_dq_out2_delay(write_group, i, new_delay);
- scc_mgr_load_dq (i);
+ scc_mgr_load_dq(i);
}
- /* dm shift */
+ //USER dm shift
for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
new_delay = READ_SCC_DM_IO_OUT2_DELAY(i);
new_delay += delay;
if (new_delay > IO_IO_OUT2_DELAY_MAX) {
- pr_debug("%s(%u, %u, %u) DM[%u]: %u > %u => %u\n",
- __func__, write_group, group_bgn, delay, i,
- new_delay,
- IO_IO_OUT2_DELAY_MAX,
- IO_IO_OUT2_DELAY_MAX);
+ DPRINT(1, "%s(%lu, %lu, %lu) DM[%lu]: %lu > %lu => %lu",
+ __func__, write_group, group_bgn, delay, i,
+ new_delay, (long unsigned int)IO_IO_OUT2_DELAY_MAX,
+ (long unsigned int)IO_IO_OUT2_DELAY_MAX);
new_delay = IO_IO_OUT2_DELAY_MAX;
}
scc_mgr_set_dm_out2_delay(write_group, i, new_delay);
- scc_mgr_load_dm (i);
+ scc_mgr_load_dm(i);
}
- /* dqs shift */
+ //USER dqs shift
new_delay = READ_SCC_DQS_IO_OUT2_DELAY();
new_delay += delay;
if (new_delay > IO_IO_OUT2_DELAY_MAX) {
- pr_debug("%s(%u, %u, %u) DQS: %u > %d => %d;"
- " adding %u to OUT1\n",
- __func__, write_group, group_bgn, delay,
- new_delay, IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX,
- new_delay - IO_IO_OUT2_DELAY_MAX);
- scc_mgr_set_dqs_out1_delay(write_group, new_delay -
- IO_IO_OUT2_DELAY_MAX);
+ DPRINT(1, "%s(%lu, %lu, %lu) DQS: %lu > %d => %d; adding %lu to OUT1",
+ __func__, write_group, group_bgn, delay,
+ new_delay, IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX,
+ new_delay - IO_IO_OUT2_DELAY_MAX);
+ scc_mgr_set_dqs_out1_delay(write_group, new_delay - IO_IO_OUT2_DELAY_MAX);
new_delay = IO_IO_OUT2_DELAY_MAX;
}
scc_mgr_set_dqs_out2_delay(write_group, new_delay);
- scc_mgr_load_dqs_io ();
+ scc_mgr_load_dqs_io();
- /* oct shift */
+ //USER oct shift
new_delay = READ_SCC_OCT_OUT2_DELAY(write_group);
new_delay += delay;
if (new_delay > IO_IO_OUT2_DELAY_MAX) {
- pr_debug("%s(%u, %u, %u) DQS: %u > %d => %d;"
- " adding %u to OUT1\n",
- __func__, write_group, group_bgn, delay,
- new_delay, IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX,
- new_delay - IO_IO_OUT2_DELAY_MAX);
- scc_mgr_set_oct_out1_delay(write_group, new_delay -
- IO_IO_OUT2_DELAY_MAX);
+ DPRINT(1, "%s(%lu, %lu, %lu) DQS: %lu > %d => %d; adding %lu to OUT1",
+ __func__, write_group, group_bgn, delay,
+ new_delay, IO_IO_OUT2_DELAY_MAX, IO_IO_OUT2_DELAY_MAX,
+ new_delay - IO_IO_OUT2_DELAY_MAX);
+ scc_mgr_set_oct_out1_delay(write_group, new_delay - IO_IO_OUT2_DELAY_MAX);
new_delay = IO_IO_OUT2_DELAY_MAX;
}
@@ -983,852 +1046,557 @@ static void scc_mgr_apply_group_all_out_delay_add (uint32_t write_group,
scc_mgr_load_dqs_for_write_group(write_group);
}
-/*
- * USER apply a delay to the entire output side (DQ, DM, DQS, OCT)
- * and to all ranks
- */
-static void scc_mgr_apply_group_all_out_delay_add_all_ranks (uint32_t write_group,
- uint32_t group_bgn, uint32_t delay)
+//USER apply a delay to the entire output side (DQ, DM, DQS, OCT) and to all ranks
+static void scc_mgr_apply_group_all_out_delay_add_all_ranks(uint32_t write_group,
+ uint32_t group_bgn, uint32_t delay)
{
uint32_t r;
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) {
- scc_mgr_apply_group_all_out_delay_add (write_group,
- group_bgn, delay);
+
+ select_shadow_regs_for_update(r, write_group, 1);
+
+ scc_mgr_apply_group_all_out_delay_add(write_group, group_bgn, delay);
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
}
}
-static void scc_mgr_spread_out2_delay_all_ranks (uint32_t write_group,
- uint32_t test_bgn)
+static inline void scc_mgr_spread_out2_delay_all_ranks(uint32_t write_group, uint32_t test_bgn)
{
-#if STRATIXV || ARRIAVGZ
- uint32_t found;
- uint32_t i;
- uint32_t p;
- uint32_t d;
- uint32_t r;
-
- const uint32_t delay_step = IO_IO_OUT2_DELAY_MAX /
- (RW_MGR_MEM_DQ_PER_WRITE_DQS-1);
- /* we start at zero, so have one less dq to devide among */
-
- for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
- r += NUM_RANKS_PER_SHADOW_REG) {
- for (i = 0, p = test_bgn, d = 0;
- i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
- i++, p++, d += delay_step) {
- pr_debug("rw_mgr_mem_calibrate_vfifo_find"
- "_dqs_en_phase_sweep_dq_in_delay: g=%u r=%u,"
- " i=%u p=%u d=%u\n",
- write_group, r, i, p, d);
- scc_mgr_set_dq_out2_delay(write_group, i, d);
- scc_mgr_load_dq (i);
- }
- IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
- }
-#endif
}
-#if DDR3
-/* optimization used to recover some slots in ddr3 inst_rom */
-/* could be applied to other protocols if we wanted to */
+// optimization used to recover some slots in ddr3 inst_rom
+// could be applied to other protocols if we wanted to
static void set_jump_as_return(void)
{
- /*
- * to save space, we replace return with jump to special shared
- * RETURN instruction so we set the counter to large value so that
- * we always jump
- */
+ // to save space, we replace return with jump to special shared RETURN instruction
+ // so we set the counter to large value so that we always jump
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0xFF);
IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_RETURN);
}
-#endif
-/*
- * should always use constants as argument to ensure all computations are
- * performed at compile time
- */
-static void delay_for_n_mem_clocks(const uint32_t clocks)
+// should always use constants as argument to ensure all computations are performed at compile time
+static inline void delay_for_n_mem_clocks(const uint32_t clocks)
{
uint32_t afi_clocks;
uint8_t inner;
uint8_t outer;
uint16_t c_loop;
- afi_clocks = (clocks + AFI_RATE_RATIO-1) / AFI_RATE_RATIO;
- /* scale (rounding up) to get afi clocks */
+ afi_clocks = (clocks + AFI_RATE_RATIO - 1) / AFI_RATE_RATIO; /* scale (rounding up) to get afi clocks */
- /*
- * Note, we don't bother accounting for being off a little bit
- * because of a few extra instructions in outer loops
- * Note, the loops have a test at the end, and do the test before
- * the decrement, and so always perform the loop
- * 1 time more than the counter value
- */
+ // Note, we don't bother accounting for being off a little bit because of a few extra instructions in outer loops
+ // Note, the loops have a test at the end, and do the test before the decrement, and so always perform the loop
+ // 1 time more than the counter value
if (afi_clocks == 0) {
inner = outer = c_loop = 0;
} else if (afi_clocks <= 0x100) {
- inner = afi_clocks-1;
+ inner = afi_clocks - 1;
outer = 0;
c_loop = 0;
} else if (afi_clocks <= 0x10000) {
inner = 0xff;
- outer = (afi_clocks-1) >> 8;
+ outer = (afi_clocks - 1) >> 8;
c_loop = 0;
} else {
inner = 0xff;
outer = 0xff;
- c_loop = (afi_clocks-1) >> 16;
- }
-
- /*
- * rom instructions are structured as follows:
- *
- * IDLE_LOOP2: jnz cntr0, TARGET_A
- * IDLE_LOOP1: jnz cntr1, TARGET_B
- * return
- *
- * so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and
- * TARGET_B is set to IDLE_LOOP2 as well
- *
- * if we have no outer loop, though, then we can use IDLE_LOOP1 only,
- * and set TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
- *
- * a little confusing, but it helps save precious space in the inst_rom
- * and sequencer rom and keeps the delays more accurate and reduces
- * overhead
- */
+ c_loop = (afi_clocks - 1) >> 16;
+ }
+
+ // rom instructions are structured as follows:
+ //
+ // IDLE_LOOP2: jnz cntr0, TARGET_A
+ // IDLE_LOOP1: jnz cntr1, TARGET_B
+ // return
+ //
+ // so, when doing nested loops, TARGET_A is set to IDLE_LOOP2, and TARGET_B is
+ // set to IDLE_LOOP2 as well
+ //
+ // if we have no outer loop, though, then we can use IDLE_LOOP1 only, and set
+ // TARGET_B to IDLE_LOOP1 and we skip IDLE_LOOP2 entirely
+ //
+ // a little confusing, but it helps save precious space in the inst_rom and sequencer rom
+ // and keeps the delays more accurate and reduces overhead
if (afi_clocks <= 0x100) {
- IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0,
- SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner));
+
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner));
IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_IDLE_LOOP1);
IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_IDLE_LOOP1);
+
} else {
- IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0,
- SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner));
- IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0,
- SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer));
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, SKIP_DELAY_LOOP_VALUE_OR_ZERO(inner));
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, SKIP_DELAY_LOOP_VALUE_OR_ZERO(outer));
IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_IDLE_LOOP2);
IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_IDLE_LOOP2);
- /* hack to get around compiler not being smart enough */
+ // hack to get around compiler not being smart enough
if (afi_clocks <= 0x10000) {
- /* only need to run once */
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
- __RW_MGR_IDLE_LOOP2);
+ // only need to run once
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_IDLE_LOOP2);
} else {
do {
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
- __RW_MGR_IDLE_LOOP2);
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_IDLE_LOOP2);
} while (c_loop-- != 0);
}
}
}
-/* Special routine to recover memory device from illegal state after */
-/* ck/dqs relationship is violated. */
-static void recover_mem_device_after_ck_dqs_violation(void)
+// should always use constants as argument to ensure all computations are performed at compile time
+static inline void delay_for_n_ns(const uint32_t nanoseconds)
{
- /* Current protocol doesn't require any special recovery */
+ delay_for_n_mem_clocks((1000 * nanoseconds) / (1000000 / AFI_CLK_FREQ) * AFI_RATE_RATIO);
}
-static void rw_mgr_rdimm_initialize(void) { }
-
-#if DDR3
+// Special routine to recover memory device from illegal state after
+// ck/dqs relationship is violated.
+static inline void recover_mem_device_after_ck_dqs_violation(void)
+{
+ // Current protocol doesn't require any special recovery
+}
+static void rw_mgr_rdimm_initialize(void)
+{
+}
-static void rw_mgr_mem_initialize (void)
+static void rw_mgr_mem_initialize(void)
{
uint32_t r;
-
- /* The reset / cke part of initialization is broadcasted to all ranks */
+ //USER The reset / cke part of initialization is broadcasted to all ranks
IOWR_32DIRECT(RW_MGR_SET_CS_AND_ODT_MASK, 0, RW_MGR_RANK_ALL);
- /*
- * Here's how you load register for a loop
- * Counters are located @ 0x800
- * Jump address are located @ 0xC00
- * For both, registers 0 to 3 are selected using bits 3 and 2, like
- * in 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
- * I know this ain't pretty, but Avalon bus throws away the 2 least
- * significant bits
- */
-
- /* start with memory RESET activated */
-
- /* tINIT is typically 200us (but can be adjusted in the GUI)
- * The total number of cycles required for this nested counter structure to
- * complete is defined by:
- * num_cycles = (CTR2 + 1) * [(CTR1 + 1) * (2 * (CTR0 + 1) + 1) + 1] + 1
- */
-
- /* Load counters */
- IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0,
- SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR0_VAL));
- IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0,
- SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR1_VAL));
- IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0,
- SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR2_VAL));
-
- /* Load jump address */
- IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0,
- __RW_MGR_INIT_RESET_0_CKE_0);
- IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0,
- __RW_MGR_INIT_RESET_0_CKE_0);
- IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0,
- __RW_MGR_INIT_RESET_0_CKE_0);
-
- /* Execute count instruction */
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_INIT_RESET_0_CKE_0);
+ // Here's how you load register for a loop
+ //USER Counters are located @ 0x800
+ //USER Jump address are located @ 0xC00
+ //USER For both, registers 0 to 3 are selected using bits 3 and 2, like in
+ //USER 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
+ // I know this ain't pretty, but Avalon bus throws away the 2 least significant bits
- /* indicate that memory is stable */
- IOWR_32DIRECT(PHY_MGR_RESET_MEM_STBL, 0, 1);
+ //USER start with memory RESET activated
- /* transition the RESET to high */
- /* Wait for 500us */
+ //USER tINIT is typically 200us (but can be adjusted in the GUI)
+ //USER The total number of cycles required for this nested counter structure to
+ //USER complete is defined by:
+ //USER num_cycles = (CTR2 + 1) * [(CTR1 + 1) * (2 * (CTR0 + 1) + 1) + 1] + 1
- /* num_cycles = (CTR2 + 1) * [(CTR1 + 1) * (2 * (CTR0 + 1) + 1) + 1] + 1 */
+ //USER Load counters
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR0_VAL));
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR1_VAL));
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0, SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR2_VAL));
- /* Load counters */
- IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0,
- SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR0_VAL));
- IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0,
- SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR1_VAL));
- IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0,
- SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR2_VAL));
+ //USER Load jump address
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_INIT_RESET_0_CKE_0);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_INIT_RESET_0_CKE_0);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_INIT_RESET_0_CKE_0);
- /* Load jump address */
+ //USER Execute count instruction
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_INIT_RESET_0_CKE_0);
+
+ //USER indicate that memory is stable
+ IOWR_32DIRECT(PHY_MGR_RESET_MEM_STBL, 0, 1);
+
+ //USER transition the RESET to high
+ //USER Wait for 500us
+ //USER num_cycles = (CTR2 + 1) * [(CTR1 + 1) * (2 * (CTR0 + 1) + 1) + 1] + 1
+ //USER Load counters
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR0_VAL));
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR1_VAL));
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0, SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TRESET_CNTR2_VAL));
+
+ //USER Load jump address
IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_INIT_RESET_1_CKE_0);
IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_INIT_RESET_1_CKE_0);
IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_INIT_RESET_1_CKE_0);
-
IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_INIT_RESET_1_CKE_0);
- /* bring up clock enable */
+ //USER bring up clock enable
- /* tXRP < 250 ck cycles */
+ //USER tXRP < 250 ck cycles
delay_for_n_mem_clocks(250);
- /*
- * USER initialize RDIMM buffer so MRS and RZQ Calibrate commands will
- * USER be propagated to discrete memory devices
- */
+ // USER initialize RDIMM buffer so MRS and RZQ Calibrate commands will be
+ // USER propagated to discrete memory devices
rw_mgr_rdimm_initialize();
-
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
- /* set rank */
+ if (param->skip_ranks[r]) {
+ //USER request to skip the rank
+
+ continue;
+ }
+ //USER set rank
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
- /*
- * USER Use Mirror-ed commands for odd ranks if address
- * mirrorring is on
- */
+ //USER Use Mirror-ed commands for odd ranks if address mirrorring is on
if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
set_jump_as_return();
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
- __RW_MGR_MRS2_MIRR);
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS2_MIRR);
delay_for_n_mem_clocks(4);
set_jump_as_return();
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
- __RW_MGR_MRS3_MIRR);
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS3_MIRR);
delay_for_n_mem_clocks(4);
set_jump_as_return();
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
- __RW_MGR_MRS1_MIRR);
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS1_MIRR);
delay_for_n_mem_clocks(4);
set_jump_as_return();
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
- __RW_MGR_MRS0_DLL_RESET_MIRR);
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS0_DLL_RESET_MIRR);
} else {
set_jump_as_return();
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
- __RW_MGR_MRS2);
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS2);
delay_for_n_mem_clocks(4);
set_jump_as_return();
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
- __RW_MGR_MRS3);
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS3);
delay_for_n_mem_clocks(4);
set_jump_as_return();
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
- __RW_MGR_MRS1);
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS1);
set_jump_as_return();
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
- __RW_MGR_MRS0_DLL_RESET);
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS0_DLL_RESET);
}
set_jump_as_return();
IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_ZQCL);
- /* tZQinit = tDLLK = 512 ck cycles */
+ //USER tZQinit = tDLLK = 512 ck cycles
delay_for_n_mem_clocks(512);
}
}
-#endif /* DDR3 */
-#if DDR2
-static void rw_mgr_mem_initialize (void)
+static void rw_mgr_mem_dll_lock_wait(void)
{
- uint32_t r;
-
- /* *** NOTE *** */
- /* The following STAGE (n) notation refers to the corresponding
- stage in the Micron datasheet */
-
- /*
- *Here's how you load register for a loop
- * Counters are located @ 0x800
- * Jump address are located @ 0xC00
- * For both, registers 0 to 3 are selected using bits 3 and 2,
- like in
- * 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
- * I know this ain't pretty, but Avalon bus throws away the 2 least
- significant bits
- */
-
- /* *** STAGE (1, 2, 3) *** */
-
- /* start with CKE low */
-
- /* tINIT = 200us */
-
- /* tINIT is typically 200us (but can be adjusted in the GUI)
- * The total number of cycles required for this nested counter structure to
- * complete is defined by:
- * num_cycles = (CTR0 + 1) * [(CTR1 + 1) * (2 * (CTR2 + 1) + 1) + 1] + 1
- */
-
- /*TODO: Need to manage multi-rank */
-
- /* Load counters */
- IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0,
- SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR0_VAL));
- IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0,
- SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR1_VAL));
- IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0,
- SKIP_DELAY_LOOP_VALUE_OR_ZERO(SEQ_TINIT_CNTR2_VAL));
-
- /* Load jump address */
- IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_INIT_CKE_0);
- IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_INIT_CKE_0);
- IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_INIT_CKE_0);
-
- /* Execute count instruction */
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_INIT_CKE_0);
-
- /* indicate that memory is stable */
- IOWR_32DIRECT(PHY_MGR_RESET_MEM_STBL, 0, 1);
-
- /* Bring up CKE */
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_NOP);
+}
- /* *** STAGE (4) */
+//USER At the end of calibration we have to program the user settings in, and
+//USER hand off the memory to the user.
- /* Wait for 400ns */
- delay_for_n_ns(400);
+static void rw_mgr_mem_handoff(void)
+{
+ uint32_t r;
- /* Multi-rank section begins here */
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
- /* set rank */
- set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
+ if (param->skip_ranks[r]) {
+ //USER request to skip the rank
- /*
- * * **** *
- * * NOTE *
- * * **** *
- * The following commands must be spaced by tMRD or tRPA
- *which are in the order
- * of 2 to 4 full rate cycles. This is peanuts in the
- *NIOS domain, so for now
- * we can avoid redundant wait loops
- */
+ continue;
+ }
+ //USER set rank
+ set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
- /* Possible FIXME BEN: for HHP, we need to add delay loops
- * to be sure although, the sequencer write interface by itself
- * likely has enough delay
- */
+ //USER precharge all banks ...
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
- __RW_MGR_PRECHARGE_ALL);
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_PRECHARGE_ALL);
- /* *** STAGE (5) */
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_EMR2);
+ //USER load up MR settings specified by user
- /* *** STAGE (6) */
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_EMR3);
-
- /* *** STAGE (7) */
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_EMR);
-
- /* *** STAGE (8) */
- /* DLL reset */
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
- __RW_MGR_MR_DLL_RESET);
-
- /* *** STAGE (9) */
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
- __RW_MGR_PRECHARGE_ALL);
-
- /* *** STAGE (10) */
-
- /* Issue 2 refresh commands spaced by tREF */
-
- /* First REFRESH */
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_REFRESH);
-
- /* tREF = 200ns */
- delay_for_n_ns(200);
-
- /* Second REFRESH */
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_REFRESH);
-
- /* Second idle loop */
- delay_for_n_ns(200);
-
- /* *** STAGE (11) */
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
- __RW_MGR_MR_CALIB);
-
- /* *** STAGE (12) */
- /* OCD defaults */
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
- __RW_MGR_EMR_OCD_ENABLE);
-
- /* *** STAGE (13) */
- /* OCD exit */
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_EMR);
-
- /* *** STAGE (14) */
-
- /*
- * The memory is now initialized. Before being able to
- *use it, we must still
- * wait for the DLL to lock, 200 clock cycles after it
- *was reset @ STAGE (8).
- * Since we cannot keep track of time in any other way,
- *let's start counting from now
- */
- delay_for_n_mem_clocks(200);
- }
-}
-#endif /* DDR2 */
-
-#if LPDDR2
-static void rw_mgr_mem_initialize (void)
-{
- uint32_t r;
-
- /* *** NOTE *** */
- /* The following STAGE (n) notation refers to the corresponding
- stage in the Micron datasheet */
-
- /*
- *Here's how you load register for a loop
- * Counters are located @ 0x800
- * Jump address are located @ 0xC00
- * For both, registers 0 to 3 are selected using bits 3 and 2,
- *like in
- * 0x800, 0x804, 0x808, 0x80C and 0xC00, 0xC04, 0xC08, 0xC0C
- *I know this ain't pretty, but Avalon bus throws away the 2 least
- *significant bits
- */
-
-
- /* *** STAGE (1, 2, 3) *** */
-
- /* start with CKE low */
-
- /* tINIT1 = 100ns */
-
- /*
- * 100ns @ 300MHz (3.333 ns) ~ 30 cycles
- * If a is the number of iteration in a loop
- * it takes the following number of cycles to complete the operation
- * number_of_cycles = (2 + n) * a
- * where n is the number of instruction in the inner loop
- * One possible solution is n = 0 , a = 15 => a = 0x10
- */
-
- /* Load counter */
- IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, SKIP_DELAY_LOOP_VALUE_OR_ZERO(0x10));
-
- /* Load jump address */
- IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_INIT_CKE_0);
-
- /* Execute count instruction */
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_INIT_CKE_0);
-
- /* tINIT3 = 200us */
- delay_for_n_ns(200000);
-
- /* indicate that memory is stable */
- IOWR_32DIRECT(PHY_MGR_RESET_MEM_STBL, 0, 1);
-
- /* Multi-rank section begins here */
- for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
- /* set rank */
- set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
-
- /* MRW RESET */
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MR63_RESET);
- }
-
- /* tINIT5 = 10us */
- delay_for_n_ns(10000);
-
- /* Multi-rank section begins here */
- for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
- /* set rank */
- set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
-
- /* MRW ZQC */
- /* Note: We cannot calibrate other ranks when the current rank
- is calibrating for tZQINIT */
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MR10_ZQC);
-
- /* tZQINIT = 1us */
- delay_for_n_ns(1000);
-
- /*
- * * **** *
- * * NOTE *
- * * **** *
- * The following commands must be spaced by tMRW which is
- *in the order
- * of 3 to 5 full rate cycles. This is peanuts in the NIOS
- *domain, so for now
- * we can avoid redundant wait loops
- */
-
- /* MRW MR1 */
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MR1_CALIB);
-
- /* MRW MR2 */
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MR2);
-
- /* MRW MR3 */
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MR3);
- }
-}
-#endif /* LPDDR2 */
-
-/* At the end of calibration we have to program the user settings in, and
- USER hand off the memory to the user. */
-
-#if DDR3
-static void rw_mgr_mem_handoff (void)
-{
- uint32_t r;
-
-
- for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
- /* set rank */
- set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
-
- /* precharge all banks ... */
-
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_PRECHARGE_ALL);
-
- /* load up MR settings specified by user */
-
- /* Use Mirror-ed commands for odd ranks if address
- mirrorring is on */
+ //USER Use Mirror-ed commands for odd ranks if address mirrorring is on
if ((RW_MGR_MEM_ADDRESS_MIRRORING >> r) & 0x1) {
set_jump_as_return();
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
- __RW_MGR_MRS2_MIRR);
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS2_MIRR);
delay_for_n_mem_clocks(4);
set_jump_as_return();
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
- __RW_MGR_MRS3_MIRR);
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS3_MIRR);
delay_for_n_mem_clocks(4);
set_jump_as_return();
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
- __RW_MGR_MRS1_MIRR);
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS1_MIRR);
delay_for_n_mem_clocks(4);
set_jump_as_return();
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
- __RW_MGR_MRS0_USER_MIRR);
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS0_USER_MIRR);
} else {
set_jump_as_return();
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
- __RW_MGR_MRS2);
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS2);
delay_for_n_mem_clocks(4);
set_jump_as_return();
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
- __RW_MGR_MRS3);
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS3);
delay_for_n_mem_clocks(4);
set_jump_as_return();
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
- __RW_MGR_MRS1);
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS1);
delay_for_n_mem_clocks(4);
set_jump_as_return();
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
- __RW_MGR_MRS0_USER);
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MRS0_USER);
}
- /* USER need to wait tMOD (12CK or 15ns) time before issuing
- * other commands, but we will have plenty of NIOS cycles before
- * actual handoff so its okay.
- */
- }
-
-}
-#endif /* DDR3 */
-
-#if DDR2
-static void rw_mgr_mem_handoff (void)
-{
- uint32_t r;
-
- for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
- /* set rank */
- set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
-
- /* precharge all banks ... */
-
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
- __RW_MGR_PRECHARGE_ALL);
-
- /* load up MR settings specified by user */
-
- /*
- * FIXME BEN: for HHP, we need to add delay loops to be sure
- * We can check this with BFM perhaps
- * Likely enough delay in RW_MGR though
- */
-
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_EMR2);
-
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_EMR3);
-
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_EMR);
-
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MR_USER);
-
- /*
- * USER need to wait tMOD (12CK or 15ns) time before issuing
- * other commands,
- * USER but we will have plenty of NIOS cycles before actual
- * handoff so its okay.
- */
+ //USER need to wait tMOD (12CK or 15ns) time before issuing other commands,
+ //USER but we will have plenty of NIOS cycles before actual handoff so its okay.
}
-}
-#endif /* DDR2 */
-
-#if LPDDR2
-static void rw_mgr_mem_handoff (void)
-{
- uint32_t r;
-
- for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
- /* set rank */
- set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
-
- /* precharge all banks... */
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
- __RW_MGR_PRECHARGE_ALL);
-
- /* load up MR settings specified by user */
-
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MR1_USER);
-
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MR2);
-
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_MR3);
- }
}
-#endif /* LPDDR2 */
-/*
- * performs a guaranteed read on the patterns we are going to use during a
- * read test to ensure memory works
- */
-static uint32_t rw_mgr_mem_calibrate_read_test_patterns (uint32_t rank_bgn,
- uint32_t group, uint32_t num_tries, t_btfld *bit_chk, uint32_t all_ranks)
+//USER performs a guaranteed read on the patterns we are going to use during a read test to ensure memory works
+static uint32_t rw_mgr_mem_calibrate_read_test_patterns(uint32_t rank_bgn, uint32_t group,
+ uint32_t num_tries, t_btfld * bit_chk,
+ uint32_t all_ranks)
{
uint32_t r, vg;
t_btfld correct_mask_vg;
t_btfld tmp_bit_chk;
- uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
- (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
+ uint32_t rank_end =
+ all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
*bit_chk = param->read_correct_mask;
correct_mask_vg = param->read_correct_mask_vg;
for (r = rank_bgn; r < rank_end; r++) {
- /* set rank */
+ if (param->skip_ranks[r]) {
+ //USER request to skip the rank
+
+ continue;
+ }
+ //USER set rank
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
- /* Load up a constant bursts of read commands */
+ //USER Load up a constant bursts of read commands
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x20);
- IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0,
- __RW_MGR_GUARANTEED_READ);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_GUARANTEED_READ);
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, 0x20);
- IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0,
- __RW_MGR_GUARANTEED_READ_CONT);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_GUARANTEED_READ_CONT);
tmp_bit_chk = 0;
- for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
- /* reset the fifos to get pointers to known state */
+ for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1;; vg--) {
+ //USER reset the fifos to get pointers to known state
IOWR_32DIRECT(PHY_MGR_CMD_FIFO_RESET, 0, 0);
IOWR_32DIRECT(RW_MGR_RESET_READ_DATAPATH, 0, 0);
- tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
- / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
+ tmp_bit_chk =
+ tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS /
+ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP,
- ((group*RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS +
- vg) << 2), __RW_MGR_GUARANTEED_READ);
- tmp_bit_chk = tmp_bit_chk | (correct_mask_vg &
- ~(IORD_32DIRECT(BASE_RW_MGR, 0)));
+ ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + vg) << 2),
+ __RW_MGR_GUARANTEED_READ);
+ tmp_bit_chk =
+ tmp_bit_chk | (correct_mask_vg & ~(IORD_32DIRECT(BASE_RW_MGR, 0)));
- if (vg == 0)
+ if (vg == 0) {
break;
+ }
}
*bit_chk &= tmp_bit_chk;
}
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, (group << 2),
- __RW_MGR_CLEAR_DQS_ENABLE);
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, (group << 2), __RW_MGR_CLEAR_DQS_ENABLE);
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
- pr_debug("test_load_patterns(%u,ALL) => (%u == %u) => %u\n",
- group, *bit_chk, param->read_correct_mask,
- (*bit_chk == param->read_correct_mask));
+ DPRINT(2, "test_load_patterns(%lu,ALL) => (%lu == %lu) => %lu", group, *bit_chk,
+ param->read_correct_mask, (long unsigned int)(*bit_chk == param->read_correct_mask));
return (*bit_chk == param->read_correct_mask);
}
-static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks
- (uint32_t group, uint32_t num_tries, t_btfld *bit_chk)
+static uint32_t rw_mgr_mem_calibrate_read_test_patterns_all_ranks(uint32_t group,
+ uint32_t num_tries,
+ t_btfld * bit_chk)
{
if (rw_mgr_mem_calibrate_read_test_patterns(0, group, num_tries, bit_chk, 1)) {
return 1;
} else {
- /* case:139851 - if guaranteed read fails, we can retry using
- * different dqs enable phases. It is possible that with the
- * initial phase, dqs enable is asserted/deasserted too close
- * to an dqs edge, truncating the read burst.
- */
+ // case:139851 - if guaranteed read fails, we can retry using different dqs enable phases.
+ // It is possible that with the initial phase, dqs enable is asserted/deasserted too close
+ // to an dqs edge, truncating the read burst.
uint32_t p;
for (p = 0; p <= IO_DQS_EN_PHASE_MAX; p++) {
- scc_mgr_set_dqs_en_phase_all_ranks (group, p);
- if (rw_mgr_mem_calibrate_read_test_patterns(0,
- group, num_tries, bit_chk, 1)) {
+ scc_mgr_set_dqs_en_phase_all_ranks(group, p);
+ if (rw_mgr_mem_calibrate_read_test_patterns
+ (0, group, num_tries, bit_chk, 1)) {
return 1;
}
}
-
return 0;
}
}
-/* load up the patterns we are going to use during a read test */
-static void rw_mgr_mem_calibrate_read_load_patterns (uint32_t rank_bgn,
- uint32_t all_ranks)
+//USER load up the patterns we are going to use during a read test
+static void rw_mgr_mem_calibrate_read_load_patterns(uint32_t rank_bgn, uint32_t all_ranks)
{
uint32_t r;
- uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
- (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
+ uint32_t rank_end =
+ all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
for (r = rank_bgn; r < rank_end; r++) {
- /* set rank */
+ if (param->skip_ranks[r]) {
+ //USER request to skip the rank
+
+ continue;
+ }
+ //USER set rank
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
- /* Load up a constant bursts */
+ //USER Load up a constant bursts
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x20);
- IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0,
- __RW_MGR_GUARANTEED_WRITE_WAIT0);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_GUARANTEED_WRITE_WAIT0);
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, 0x20);
- IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0,
- __RW_MGR_GUARANTEED_WRITE_WAIT1);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_GUARANTEED_WRITE_WAIT1);
-#if QUARTER_RATE
- IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0, 0x01);
-#endif
-#if HALF_RATE
- IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0, 0x02);
-#endif
-#if FULL_RATE
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0, 0x04);
-#endif
- IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0,
- __RW_MGR_GUARANTEED_WRITE_WAIT2);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_GUARANTEED_WRITE_WAIT2);
-#if QUARTER_RATE
- IOWR_32DIRECT(RW_MGR_LOAD_CNTR_3, 0, 0x01);
-#endif
-#if HALF_RATE
- IOWR_32DIRECT(RW_MGR_LOAD_CNTR_3, 0, 0x02);
-#endif
-#if FULL_RATE
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_3, 0, 0x04);
-#endif
- IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_3, 0,
- __RW_MGR_GUARANTEED_WRITE_WAIT3);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_3, 0, __RW_MGR_GUARANTEED_WRITE_WAIT3);
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
- __RW_MGR_GUARANTEED_WRITE);
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_GUARANTEED_WRITE);
}
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
}
-static void rw_mgr_mem_calibrate_read_load_patterns_all_ranks (void)
+static inline void rw_mgr_mem_calibrate_read_load_patterns_all_ranks(void)
{
- rw_mgr_mem_calibrate_read_load_patterns (0, 1);
+ rw_mgr_mem_calibrate_read_load_patterns(0, 1);
}
-/*
- * try a read and see if it returns correct data back. has dummy reads
- * inserted into the mix used to align dqs enable. has more thorough checks
- * than the regular read test.
- */
-
-static uint32_t rw_mgr_mem_calibrate_read_test (uint32_t rank_bgn, uint32_t group,
- uint32_t num_tries, uint32_t all_correct, t_btfld *bit_chk,
- uint32_t all_groups, uint32_t all_ranks)
+// pe checkout pattern for harden managers
+//void pe_checkout_pattern (void)
+//{
+// // test RW manager
+//
+// // do some reads to check load buffer
+// IOWR_32DIRECT (RW_MGR_LOAD_CNTR_1, 0, 0x0);
+// IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_READ_B2B_WAIT1);
+//
+// IOWR_32DIRECT (RW_MGR_LOAD_CNTR_2, 0, 0x0);
+// IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_READ_B2B_WAIT2);
+//
+// IOWR_32DIRECT (RW_MGR_LOAD_CNTR_0, 0, 0x0);
+// IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_READ_B2B);
+//
+// IOWR_32DIRECT (RW_MGR_LOAD_CNTR_3, 0, 0x0);
+// IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_3, 0, __RW_MGR_READ_B2B);
+//
+// // clear error word
+// IOWR_32DIRECT (RW_MGR_RESET_READ_DATAPATH, 0, 0);
+//
+// IOWR_32DIRECT (RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_READ_B2B);
+//
+// uint32_t readdata;
+//
+// // read error word
+// readdata = IORD_32DIRECT(BASE_RW_MGR, 0);
+//
+// // read DI buffer
+// readdata = IORD_32DIRECT(RW_MGR_DI_BASE + 0*4, 0);
+// readdata = IORD_32DIRECT(RW_MGR_DI_BASE + 1*4, 0);
+// readdata = IORD_32DIRECT(RW_MGR_DI_BASE + 2*4, 0);
+// readdata = IORD_32DIRECT(RW_MGR_DI_BASE + 3*4, 0);
+//
+// IOWR_32DIRECT (RW_MGR_LOAD_CNTR_1, 0, 0x0);
+// IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_READ_B2B_WAIT1);
+//
+// IOWR_32DIRECT (RW_MGR_LOAD_CNTR_2, 0, 0x0);
+// IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_READ_B2B_WAIT2);
+//
+// IOWR_32DIRECT (RW_MGR_LOAD_CNTR_0, 0, 0x0);
+// IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_READ_B2B);
+//
+// IOWR_32DIRECT (RW_MGR_LOAD_CNTR_3, 0, 0x0);
+// IOWR_32DIRECT (RW_MGR_LOAD_JUMP_ADD_3, 0, __RW_MGR_READ_B2B);
+//
+// // clear error word
+// IOWR_32DIRECT (RW_MGR_RESET_READ_DATAPATH, 0, 0);
+//
+// // do read
+// IOWR_32DIRECT (RW_MGR_LOOPBACK_MODE, 0, __RW_MGR_READ_B2B);
+//
+// // read error word
+// readdata = IORD_32DIRECT(BASE_RW_MGR, 0);
+//
+// // error word should be 0x00
+//
+// // read DI buffer
+// readdata = IORD_32DIRECT(RW_MGR_DI_BASE + 0*4, 0);
+// readdata = IORD_32DIRECT(RW_MGR_DI_BASE + 1*4, 0);
+// readdata = IORD_32DIRECT(RW_MGR_DI_BASE + 2*4, 0);
+// readdata = IORD_32DIRECT(RW_MGR_DI_BASE + 3*4, 0);
+//
+// // clear error word
+// IOWR_32DIRECT (RW_MGR_RESET_READ_DATAPATH, 0, 0);
+//
+// // do dm read
+// IOWR_32DIRECT (RW_MGR_LOOPBACK_MODE, 0, __RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1);
+//
+// // read error word
+// readdata = IORD_32DIRECT(BASE_RW_MGR, 0);
+//
+// // error word should be ff
+//
+// // read DI buffer
+// readdata = IORD_32DIRECT(RW_MGR_DI_BASE + 0*4, 0);
+// readdata = IORD_32DIRECT(RW_MGR_DI_BASE + 1*4, 0);
+// readdata = IORD_32DIRECT(RW_MGR_DI_BASE + 2*4, 0);
+// readdata = IORD_32DIRECT(RW_MGR_DI_BASE + 3*4, 0);
+//
+// // exit loopback mode
+// IOWR_32DIRECT (BASE_RW_MGR, 0, __RW_MGR_IDLE_LOOP2);
+//
+// // start of phy manager access
+//
+// readdata = IORD_32DIRECT (PHY_MGR_MAX_RLAT_WIDTH, 0);
+// readdata = IORD_32DIRECT (PHY_MGR_MAX_AFI_WLAT_WIDTH, 0);
+// readdata = IORD_32DIRECT (PHY_MGR_MAX_AFI_RLAT_WIDTH, 0);
+// readdata = IORD_32DIRECT (PHY_MGR_CALIB_SKIP_STEPS, 0);
+// readdata = IORD_32DIRECT (PHY_MGR_CALIB_VFIFO_OFFSET, 0);
+// readdata = IORD_32DIRECT (PHY_MGR_CALIB_LFIFO_OFFSET, 0);
+//
+// // start of data manager test
+//
+// readdata = IORD_32DIRECT (DATA_MGR_DRAM_CFG , 0);
+// readdata = IORD_32DIRECT (DATA_MGR_MEM_T_WL , 0);
+// readdata = IORD_32DIRECT (DATA_MGR_MEM_T_ADD , 0);
+// readdata = IORD_32DIRECT (DATA_MGR_MEM_T_RL , 0);
+// readdata = IORD_32DIRECT (DATA_MGR_MEM_T_RFC , 0);
+// readdata = IORD_32DIRECT (DATA_MGR_MEM_T_REFI , 0);
+// readdata = IORD_32DIRECT (DATA_MGR_MEM_T_WR , 0);
+// readdata = IORD_32DIRECT (DATA_MGR_MEM_T_MRD , 0);
+// readdata = IORD_32DIRECT (DATA_MGR_COL_WIDTH , 0);
+// readdata = IORD_32DIRECT (DATA_MGR_ROW_WIDTH , 0);
+// readdata = IORD_32DIRECT (DATA_MGR_BANK_WIDTH , 0);
+// readdata = IORD_32DIRECT (DATA_MGR_CS_WIDTH , 0);
+// readdata = IORD_32DIRECT (DATA_MGR_ITF_WIDTH , 0);
+// readdata = IORD_32DIRECT (DATA_MGR_DVC_WIDTH , 0);
+//
+//}
+
+//USER try a read and see if it returns correct data back. has dummy reads inserted into the mix
+//USER used to align dqs enable. has more thorough checks than the regular read test.
+
+static uint32_t rw_mgr_mem_calibrate_read_test(uint32_t rank_bgn, uint32_t group,
+ uint32_t num_tries, uint32_t all_correct,
+ t_btfld * bit_chk, uint32_t all_groups,
+ uint32_t all_ranks)
{
uint32_t r, vg;
- uint32_t quick_read_mode;
t_btfld correct_mask_vg;
t_btfld tmp_bit_chk;
- uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
- (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
-
+ uint32_t rank_end =
+ all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
*bit_chk = param->read_correct_mask;
correct_mask_vg = param->read_correct_mask_vg;
- quick_read_mode = (((STATIC_CALIB_STEPS) &
- CALIB_SKIP_DELAY_SWEEPS) && ENABLE_SUPER_QUICK_CALIBRATION) ||
- BFM_MODE;
+ uint32_t quick_read_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_DELAY_SWEEPS)
+ && ENABLE_SUPER_QUICK_CALIBRATION) || BFM_MODE;
for (r = rank_bgn; r < rank_end; r++) {
- /* set rank */
+ if (param->skip_ranks[r]) {
+ //USER request to skip the rank
+
+ continue;
+ }
+ //USER set rank
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, 0x10);
- IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0,
- __RW_MGR_READ_B2B_WAIT1);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_READ_B2B_WAIT1);
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0, 0x10);
- IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0,
- __RW_MGR_READ_B2B_WAIT2);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_READ_B2B_WAIT2);
if (quick_read_mode) {
- IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x1);
- /* need at least two (1+1) reads to capture failures */
+ IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x1); /* need at least two (1+1) reads to capture failures */
} else if (all_groups) {
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x06);
} else {
@@ -1837,29 +1605,29 @@ static uint32_t rw_mgr_mem_calibrate_read_test (uint32_t rank_bgn, uint32_t grou
IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_READ_B2B);
if (all_groups) {
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_3, 0,
- RW_MGR_MEM_IF_READ_DQS_WIDTH *
- RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1);
+ RW_MGR_MEM_IF_READ_DQS_WIDTH *
+ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1);
} else {
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_3, 0, 0x0);
}
IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_3, 0, __RW_MGR_READ_B2B);
tmp_bit_chk = 0;
- for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS-1; ; vg--) {
- /* reset the fifos to get pointers to known state */
+ for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS - 1;; vg--) {
+ //USER reset the fifos to get pointers to known state
IOWR_32DIRECT(PHY_MGR_CMD_FIFO_RESET, 0, 0);
IOWR_32DIRECT(RW_MGR_RESET_READ_DATAPATH, 0, 0);
- tmp_bit_chk = tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS
- / RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
+ tmp_bit_chk =
+ tmp_bit_chk << (RW_MGR_MEM_DQ_PER_READ_DQS /
+ RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS);
- IOWR_32DIRECT(all_groups ? RW_MGR_RUN_ALL_GROUPS :
- RW_MGR_RUN_SINGLE_GROUP, ((group *
- RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS+vg)
- << 2), __RW_MGR_READ_B2B);
- tmp_bit_chk = tmp_bit_chk | (correct_mask_vg &
- ~(IORD_32DIRECT(BASE_RW_MGR, 0)));
+ IOWR_32DIRECT(all_groups ? RW_MGR_RUN_ALL_GROUPS : RW_MGR_RUN_SINGLE_GROUP,
+ ((group * RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS + vg) << 2),
+ __RW_MGR_READ_B2B);
+ tmp_bit_chk =
+ tmp_bit_chk | (correct_mask_vg & ~(IORD_32DIRECT(BASE_RW_MGR, 0)));
if (vg == 0) {
break;
@@ -1868,36 +1636,34 @@ static uint32_t rw_mgr_mem_calibrate_read_test (uint32_t rank_bgn, uint32_t grou
*bit_chk &= tmp_bit_chk;
}
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, (group << 2),
- __RW_MGR_CLEAR_DQS_ENABLE);
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, (group << 2), __RW_MGR_CLEAR_DQS_ENABLE);
if (all_correct) {
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
- pr_debug("read_test(%u,ALL,%u) => (%u == %u) => %u\n",
- group, all_groups, *bit_chk, param->read_correct_mask,
- (*bit_chk ==
- param->read_correct_mask));
+ DPRINT(2, "read_test(%lu,ALL,%lu) => (%lu == %lu) => %lu", group, all_groups,
+ *bit_chk, param->read_correct_mask,
+ (long unsigned int)(*bit_chk == param->read_correct_mask));
return (*bit_chk == param->read_correct_mask);
- } else {
+ } else {
set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
- pr_debug("read_test(%u,ONE,%u) => (%u != %u) => %u\n",
- group, all_groups, *bit_chk, 0,
- (*bit_chk != 0x00));
+ DPRINT(2, "read_test(%lu,ONE,%lu) => (%lu != %lu) => %lu", group, all_groups,
+ *bit_chk, (long unsigned int)0, (long unsigned int)(*bit_chk != 0x00));
return (*bit_chk != 0x00);
}
}
-static uint32_t rw_mgr_mem_calibrate_read_test_all_ranks (uint32_t group,
- uint32_t num_tries, uint32_t all_correct, t_btfld *bit_chk,
- uint32_t all_groups)
+static inline uint32_t rw_mgr_mem_calibrate_read_test_all_ranks(uint32_t group, uint32_t num_tries,
+ uint32_t all_correct,
+ t_btfld * bit_chk,
+ uint32_t all_groups)
{
- return rw_mgr_mem_calibrate_read_test (0, group, num_tries, all_correct,
- bit_chk, all_groups, 1);
+ return rw_mgr_mem_calibrate_read_test(0, group, num_tries, all_correct, bit_chk, all_groups,
+ 1);
}
-static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
+static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t * v)
{
- /* fiddle with FIFO */
+ //USER fiddle with FIFO
if (HARD_PHY) {
IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_HARD_PHY, 0, grp);
} else if (QUARTER_RATE_MODE && !HARD_VFIFO) {
@@ -1911,8 +1677,7 @@ static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_FR, 0, grp);
}
} else if (HARD_VFIFO) {
- /* Arria V & Cyclone V have a hard full-rate VFIFO that only
- has a single incr signal */
+ // Arria V & Cyclone V have a hard full-rate VFIFO that only has a single incr signal
IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_FR, 0, grp);
} else {
if (!HALF_RATE_MODE || (*v & 1) == 1) {
@@ -1923,22 +1688,44 @@ static void rw_mgr_incr_vfifo(uint32_t grp, uint32_t *v)
}
(*v)++;
+ BFM_INC_VFIFO;
+}
+
+//Used in quick cal to properly loop through the duplicated VFIFOs in AV QDRII/RLDRAM
+static inline void rw_mgr_incr_vfifo_all(uint32_t grp, uint32_t * v)
+{
+#if VFIFO_CONTROL_WIDTH_PER_DQS == 1
+ rw_mgr_incr_vfifo(grp, v);
+#else
+ uint32_t i;
+ for (i = 0; i < VFIFO_CONTROL_WIDTH_PER_DQS; i++) {
+ rw_mgr_incr_vfifo(grp * VFIFO_CONTROL_WIDTH_PER_DQS + i, v);
+ if (i != 0) {
+ (*v)--;
+ }
+ }
+#endif
}
-static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t *v)
+static void rw_mgr_decr_vfifo(uint32_t grp, uint32_t * v)
{
uint32_t i;
- for (i = 0; i < VFIFO_SIZE-1; i++) {
+ for (i = 0; i < VFIFO_SIZE - 1; i++) {
rw_mgr_incr_vfifo(grp, v);
}
}
-/* find a good dqs enable to use */
-static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase (uint32_t grp)
+//USER find a good dqs enable to use
+
+#if NEWVERSION_DQSEN
+
+// Navid's version
+
+static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
{
- uint32_t i, d, v, p;
+ uint32_t i, d, v, p, sr;
uint32_t max_working_cnt;
uint32_t fail_cnt;
t_btfld bit_chk;
@@ -1948,8 +1735,6 @@ static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase (uint32_t grp)
uint32_t test_status;
uint32_t found_passing_read, found_failing_read, initial_failing_dtap;
- ALTERA_ASSERT(grp < RW_MGR_MEM_IF_READ_DQS_WIDTH);
-
reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
@@ -1957,8 +1742,8 @@ static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase (uint32_t grp)
fail_cnt = 0;
- /* ************************************************************** */
- /* * Step 0 : Determine number of delay taps for each phase tap * */
+ //USER **************************************************************
+ //USER * Step 0 : Determine number of delay taps for each phase tap *
dtaps_per_ptap = 0;
tmp_delay = 0;
@@ -1967,53 +1752,52 @@ static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase (uint32_t grp)
tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
}
dtaps_per_ptap--;
- ALTERA_ASSERT(dtaps_per_ptap <= IO_DQS_EN_DELAY_MAX);
tmp_delay = 0;
- /* ********************************************************* */
- /* * Step 1 : First push vfifo until we get a failing read * */
- for (v = 0; v < VFIFO_SIZE; ) {
- pr_debug("find_dqs_en_phase: vfifo %u\n", vfifo_idx);
- test_status = rw_mgr_mem_calibrate_read_test_all_ranks
- (grp, 1, PASS_ONE_BIT, &bit_chk, 0);
+ // VFIFO sweep
+
+ //USER *********************************************************
+ //USER * Step 1 : First push vfifo until we get a failing read *
+ for (v = 0; v < VFIFO_SIZE;) {
+ DPRINT(2, "find_dqs_en_phase: vfifo %lu", BFM_GBL_GET(vfifo_idx));
+ test_status =
+ rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, PASS_ONE_BIT, &bit_chk, 0);
if (!test_status) {
fail_cnt++;
- if (fail_cnt == 2)
+ if (fail_cnt == 2) {
break;
+ }
}
-
- /* fiddle with FIFO */
+ //USER fiddle with FIFO
rw_mgr_incr_vfifo(grp, &v);
}
if (v >= VFIFO_SIZE) {
- /* no failing read found!! Something must have gone wrong */
- pr_debug("find_dqs_en_phase: vfifo failed\n");
+ //USER no failing read found!! Something must have gone wrong
+ DPRINT(2, "find_dqs_en_phase: vfifo failed");
return 0;
}
max_working_cnt = 0;
- /* ******************************************************** */
- /* * step 2: find first working phase, increment in ptaps * */
+ //USER ********************************************************
+ //USER * step 2: find first working phase, increment in ptaps *
found_begin = 0;
work_bgn = 0;
- for (d = 0; d <= dtaps_per_ptap; d++, tmp_delay +=
- IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
+ for (d = 0; d <= dtaps_per_ptap; d++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
work_bgn = tmp_delay;
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
for (i = 0; i < VFIFO_SIZE; i++) {
- for (p = 0; p <= IO_DQS_EN_PHASE_MAX; p++, work_bgn +=
- IO_DELAY_PER_OPA_TAP) {
- pr_debug("find_dqs_en_phase: begin: vfifo=%u"
- " ptap=%u dtap=%u\n", vfifo_idx, p, d);
+ for (p = 0; p <= IO_DQS_EN_PHASE_MAX; p++, work_bgn += IO_DELAY_PER_OPA_TAP) {
+ DPRINT(2, "find_dqs_en_phase: begin: vfifo=%lu ptap=%lu dtap=%lu",
+ BFM_GBL_GET(vfifo_idx), p, d);
scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
test_status =
- rw_mgr_mem_calibrate_read_test_all_ranks
- (grp, 1, PASS_ONE_BIT, &bit_chk, 0);
+ rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, PASS_ONE_BIT,
+ &bit_chk, 0);
if (test_status) {
max_working_cnt = 1;
@@ -2022,38 +1806,39 @@ static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase (uint32_t grp)
}
}
- if (found_begin)
+ if (found_begin) {
break;
+ }
if (p > IO_DQS_EN_PHASE_MAX) {
- /* fiddle with FIFO */
+ //USER fiddle with FIFO
rw_mgr_incr_vfifo(grp, &v);
}
}
- if (found_begin)
+ if (found_begin) {
break;
+ }
}
if (i >= VFIFO_SIZE) {
- /* cannot find working solution */
- pr_debug("find_dqs_en_phase: no vfifo/ptap/dtap\n");
+ //USER cannot find working solution
+ DPRINT(2, "find_dqs_en_phase: no vfifo/ptap/dtap");
return 0;
}
work_end = work_bgn;
- /* If d is 0 then the working window covers a phase tap and
- we can follow the old procedure otherwise, we've found the beginning,
- and we need to increment the dtaps until we find the end */
+ //USER If d is 0 then the working window covers a phase tap and we can follow the old procedure
+ //USER otherwise, we've found the beginning, and we need to increment the dtaps until we find the end
if (d == 0) {
- /* ********************************************************* */
- /* * step 3a: if we have room, back off by one and
- increment in dtaps * */
+ //USER ********************************************************************
+ //USER * step 3a: if we have room, back off by one and increment in dtaps *
+ COV(EN_PHASE_PTAP_OVERLAP);
- /* Special case code for backing up a phase */
+ //USER Special case code for backing up a phase
if (p == 0) {
- p = IO_DQS_EN_PHASE_MAX ;
+ p = IO_DQS_EN_PHASE_MAX;
rw_mgr_decr_vfifo(grp, &v);
} else {
p = p - 1;
@@ -2063,28 +1848,26 @@ static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase (uint32_t grp)
found_begin = 0;
for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < work_bgn;
- d++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
+ d++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
- pr_debug("find_dqs_en_phase: begin-2: vfifo=%u "
- "ptap=%u dtap=%u\n", vfifo_idx, p, d);
+ DPRINT(2, "find_dqs_en_phase: begin-2: vfifo=%lu ptap=%lu dtap=%lu",
+ BFM_GBL_GET(vfifo_idx), p, d);
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
- if (rw_mgr_mem_calibrate_read_test_all_ranks (grp, 1,
- PASS_ONE_BIT, &bit_chk, 0)) {
+ if (rw_mgr_mem_calibrate_read_test_all_ranks
+ (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
found_begin = 1;
work_bgn = tmp_delay;
break;
}
}
- /* We have found a working dtap before the ptap found above */
+ //USER We have found a working dtap before the ptap found above
if (found_begin == 1) {
max_working_cnt++;
}
-
- /* Restore VFIFO to old state before we decremented it
- (if needed) */
+ //USER Restore VFIFO to old state before we decremented it (if needed)
p = p + 1;
if (p > IO_DQS_EN_PHASE_MAX) {
p = 0;
@@ -2093,54 +1876,52 @@ static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase (uint32_t grp)
scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
- /* ********************************************************* */
- /* * step 4a: go forward from working phase to non working
- phase, increment in ptaps * */
+ //USER ***********************************************************************************
+ //USER * step 4a: go forward from working phase to non working phase, increment in ptaps *
p = p + 1;
work_end += IO_DELAY_PER_OPA_TAP;
if (p > IO_DQS_EN_PHASE_MAX) {
- /* fiddle with FIFO */
+ //USER fiddle with FIFO
p = 0;
rw_mgr_incr_vfifo(grp, &v);
}
found_end = 0;
for (; i < VFIFO_SIZE + 1; i++) {
- for (; p <= IO_DQS_EN_PHASE_MAX; p++, work_end
- += IO_DELAY_PER_OPA_TAP) {
- pr_debug("find_dqs_en_phase: end: vfifo=%u "
- "ptap=%u dtap=%u\n", vfifo_idx, p, 0);
+ for (; p <= IO_DQS_EN_PHASE_MAX; p++, work_end += IO_DELAY_PER_OPA_TAP) {
+ DPRINT(2, "find_dqs_en_phase: end: vfifo=%lu ptap=%lu dtap=%lu",
+ BFM_GBL_GET(vfifo_idx), p, (long unsigned int)0);
scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
if (!rw_mgr_mem_calibrate_read_test_all_ranks
- (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
+ (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
found_end = 1;
break;
+ } else {
+ max_working_cnt++;
}
-
- max_working_cnt++;
}
- if (found_end)
+ if (found_end) {
break;
+ }
if (p > IO_DQS_EN_PHASE_MAX) {
- /* fiddle with FIFO */
+ //USER fiddle with FIFO
rw_mgr_incr_vfifo(grp, &v);
p = 0;
}
}
if (i >= VFIFO_SIZE + 1) {
- /* cannot see edge of failing read */
- pr_debug("find_dqs_en_phase: end: failed\n");
+ //USER cannot see edge of failing read
+ DPRINT(2, "find_dqs_en_phase: end: failed");
return 0;
}
+ //USER *********************************************************
+ //USER * step 5a: back off one from last, increment in dtaps *
- /* ********************************************************* */
- /* * step 5a: back off one from last, increment in dtaps * */
-
- /* Special case code for backing up a phase */
+ //USER Special case code for backing up a phase
if (p == 0) {
p = IO_DQS_EN_PHASE_MAX;
rw_mgr_decr_vfifo(grp, &v);
@@ -2151,368 +1932,768 @@ static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase (uint32_t grp)
work_end -= IO_DELAY_PER_OPA_TAP;
scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
- /* * The actual increment of dtaps is done outside of
- the if/else loop to share code */
+ //USER * The actual increment of dtaps is done outside of the if/else loop to share code
d = 0;
- pr_debug("find_dqs_en_phase: found end v/p: vfifo=%u ptap=%u\n",
- vfifo_idx, p);
+ DPRINT(2, "find_dqs_en_phase: found end v/p: vfifo=%lu ptap=%lu",
+ BFM_GBL_GET(vfifo_idx), p);
} else {
- /* ******************************************************* */
- /* * step 3-5b: Find the right edge of the window using
- delay taps * */
+ //USER ********************************************************************
+ //USER * step 3-5b: Find the right edge of the window using delay taps *
+ COV(EN_PHASE_PTAP_NO_OVERLAP);
- pr_debug("find_dqs_en_phase: begin found: vfifo=%u ptap=%u "
- "dtap=%u begin=%u\n", vfifo_idx, p, d,
- work_bgn);
+ DPRINT(2, "find_dqs_en_phase: begin found: vfifo=%lu ptap=%lu dtap=%lu begin=%lu",
+ BFM_GBL_GET(vfifo_idx), p, d, work_bgn);
+ BFM_GBL_SET(dqs_enable_left_edge[grp].v, BFM_GBL_GET(vfifo_idx));
+ BFM_GBL_SET(dqs_enable_left_edge[grp].p, p);
+ BFM_GBL_SET(dqs_enable_left_edge[grp].d, d);
+ BFM_GBL_SET(dqs_enable_left_edge[grp].ps, work_bgn);
work_end = work_bgn;
- /* * The actual increment of dtaps is done outside of the
- if/else loop to share code */
+ //USER * The actual increment of dtaps is done outside of the if/else loop to share code
- /* Only here to counterbalance a subtract later on which is
- not needed if this branch of the algorithm is taken */
+ //USER Only here to counterbalance a subtract later on which is not needed if this branch
+ //USER of the algorithm is taken
max_working_cnt++;
}
- /* The dtap increment to find the failing edge is done here */
- for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end +=
- IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
+ //USER The dtap increment to find the failing edge is done here
+ for (; d <= IO_DQS_EN_DELAY_MAX; d++, work_end += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) {
- pr_debug("find_dqs_en_phase: end-2: dtap=%u\n", d);
- scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
+ DPRINT(2, "find_dqs_en_phase: end-2: dtap=%lu", d);
+ scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
- if (!rw_mgr_mem_calibrate_read_test_all_ranks (grp, 1,
- PASS_ONE_BIT, &bit_chk, 0)) {
- break;
- }
+ if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
+ break;
}
+ }
- /* Go back to working dtap */
+ //USER Go back to working dtap
if (d != 0) {
work_end -= IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
}
- pr_debug("find_dqs_en_phase: found end v/p/d: vfifo=%u ptap=%u "
- "dtap=%u end=%u\n", vfifo_idx, p, d-1, work_end);
+ DPRINT(2, "find_dqs_en_phase: found end v/p/d: vfifo=%lu ptap=%lu dtap=%lu end=%lu",
+ BFM_GBL_GET(vfifo_idx), p, d - 1, work_end);
+ BFM_GBL_SET(dqs_enable_right_edge[grp].v, BFM_GBL_GET(vfifo_idx));
+ BFM_GBL_SET(dqs_enable_right_edge[grp].p, p);
+ BFM_GBL_SET(dqs_enable_right_edge[grp].d, d - 1);
+ BFM_GBL_SET(dqs_enable_right_edge[grp].ps, work_end);
if (work_end >= work_bgn) {
- /* we have a working range */
+ //USER we have a working range
} else {
- /* nil range */
- pr_debug("find_dqs_en_phase: end-2: failed\n");
+ //USER nil range
+ DPRINT(2, "find_dqs_en_phase: end-2: failed");
return 0;
}
- pr_debug("find_dqs_en_phase: found range [%u,%u]\n",
- work_bgn, work_end);
+ DPRINT(2, "find_dqs_en_phase: found range [%lu,%lu]", work_bgn, work_end);
-#if USE_DQS_TRACKING
- /* *************************************************************** */
- /*
- * * We need to calculate the number of dtaps that equal a ptap
- * * To do that we'll back up a ptap and re-find the edge of the
- * * window using dtaps
- */
+ // ***************************************************************
+ //USER * We need to calculate the number of dtaps that equal a ptap
+ //USER * To do that we'll back up a ptap and re-find the edge of the
+ //USER * window using dtaps
- pr_debug("find_dqs_en_phase: calculate dtaps_per_ptap for tracking\n");
+ DPRINT(2, "find_dqs_en_phase: calculate dtaps_per_ptap for tracking");
- /* Special case code for backing up a phase */
+ //USER Special case code for backing up a phase
if (p == 0) {
p = IO_DQS_EN_PHASE_MAX;
rw_mgr_decr_vfifo(grp, &v);
- pr_debug("find_dqs_en_phase: backed up cycle/phase: "
- "v=%u p=%u\n", vfifo_idx, p);
+ DPRINT(2, "find_dqs_en_phase: backed up cycle/phase: v=%lu p=%lu",
+ BFM_GBL_GET(vfifo_idx), p);
} else {
p = p - 1;
- pr_debug("find_dqs_en_phase: backed up phase only: v=%u "
- "p=%u\n", vfifo_idx, p);
+ DPRINT(2, "find_dqs_en_phase: backed up phase only: v=%lu p=%lu",
+ BFM_GBL_GET(vfifo_idx), p);
}
scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
- /*
- * Increase dtap until we first see a passing read (in case the
- * window is smaller than a ptap),
- * and then a failing read to mark the edge of the window again
- */
+ //USER Increase dtap until we first see a passing read (in case the window is smaller than a ptap),
+ //USER and then a failing read to mark the edge of the window again
- /* Find a passing read */
- pr_debug("find_dqs_en_phase: find passing read\n");
+ //USER Find a passing read
+ DPRINT(2, "find_dqs_en_phase: find passing read");
found_passing_read = 0;
found_failing_read = 0;
initial_failing_dtap = d;
for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
- pr_debug("find_dqs_en_phase: testing read d=%u\n", d);
+ DPRINT(2, "find_dqs_en_phase: testing read d=%lu", d);
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
- if (rw_mgr_mem_calibrate_read_test_all_ranks (grp, 1,
- PASS_ONE_BIT, &bit_chk, 0)) {
+ if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
found_passing_read = 1;
break;
}
}
if (found_passing_read) {
- /* Find a failing read */
- pr_debug("find_dqs_en_phase: find failing read\n");
+ //USER Find a failing read
+ DPRINT(2, "find_dqs_en_phase: find failing read");
for (d = d + 1; d <= IO_DQS_EN_DELAY_MAX; d++) {
- pr_debug("find_dqs_en_phase: testing read d=%u\n", d);
+ DPRINT(2, "find_dqs_en_phase: testing read d=%lu", d);
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
if (!rw_mgr_mem_calibrate_read_test_all_ranks
- (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
+ (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
found_failing_read = 1;
break;
}
}
} else {
- pr_debug("find_dqs_en_phase: failed to calculate dtaps "
- "per ptap. Fall back on static value\n");
+ DPRINT(1,
+ "find_dqs_en_phase: failed to calculate dtaps per ptap. Fall back on static value");
}
- /*
- * The dynamically calculated dtaps_per_ptap is only valid if we
- * found a passing/failing read. If we didn't, it means d hit the max
- * (IO_DQS_EN_DELAY_MAX). Otherwise, dtaps_per_ptap retains its
- * statically calculated value.
- */
+ //USER The dynamically calculated dtaps_per_ptap is only valid if we found a passing/failing read
+ //USER If we didn't, it means d hit the max (IO_DQS_EN_DELAY_MAX).
+ //USER Otherwise, dtaps_per_ptap retains its statically calculated value.
if (found_passing_read && found_failing_read) {
dtaps_per_ptap = d - initial_failing_dtap;
}
- ALTERA_ASSERT(dtaps_per_ptap <= IO_DQS_EN_DELAY_MAX);
IOWR_32DIRECT(REG_FILE_DTAPS_PER_PTAP, 0, dtaps_per_ptap);
- pr_debug("find_dqs_en_phase: dtaps_per_ptap=%u - %u = %u\n", d,
- initial_failing_dtap, dtaps_per_ptap);
-#endif
+ DPRINT(2, "find_dqs_en_phase: dtaps_per_ptap=%lu - %lu = %lu", d, initial_failing_dtap,
+ dtaps_per_ptap);
- /* ******************************************** */
- /* * step 6: Find the centre of the window * */
+ //USER ********************************************
+ //USER * step 6: Find the centre of the window *
work_mid = (work_bgn + work_end) / 2;
tmp_delay = 0;
- pr_debug("work_bgn=%d work_end=%d work_mid=%d\n", work_bgn,
- work_end, work_mid);
- /* Get the middle delay to be less than a VFIFO delay */
- for (p = 0; p <= IO_DQS_EN_PHASE_MAX;
- p++, tmp_delay += IO_DELAY_PER_OPA_TAP)
- ;
- pr_debug("vfifo ptap delay %d\n", tmp_delay);
+ DPRINT(2, "work_bgn=%ld work_end=%ld work_mid=%ld", work_bgn, work_end, work_mid);
+ //USER Get the middle delay to be less than a VFIFO delay
+ for (p = 0; p <= IO_DQS_EN_PHASE_MAX; p++, tmp_delay += IO_DELAY_PER_OPA_TAP) ;
+ DPRINT(2, "vfifo ptap delay %ld", tmp_delay);
while (work_mid > tmp_delay)
work_mid -= tmp_delay;
- pr_debug("new work_mid %d\n", work_mid);
+ DPRINT(2, "new work_mid %ld", work_mid);
tmp_delay = 0;
for (p = 0; p <= IO_DQS_EN_PHASE_MAX && tmp_delay < work_mid;
- p++, tmp_delay += IO_DELAY_PER_OPA_TAP)
- ;
+ p++, tmp_delay += IO_DELAY_PER_OPA_TAP) ;
tmp_delay -= IO_DELAY_PER_OPA_TAP;
- pr_debug("new p %d, tmp_delay=%d\n", p-1, tmp_delay);
- for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < work_mid; d++,
- tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP)
- ;
- pr_debug("new d %d, tmp_delay=%d\n", d, tmp_delay);
+ DPRINT(2, "new p %ld, tmp_delay=%ld", p - 1, tmp_delay);
+ for (d = 0; d <= IO_DQS_EN_DELAY_MAX && tmp_delay < work_mid;
+ d++, tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) ;
+ DPRINT(2, "new d %ld, tmp_delay=%ld", d, tmp_delay);
- scc_mgr_set_dqs_en_phase_all_ranks(grp, p-1);
+ scc_mgr_set_dqs_en_phase_all_ranks(grp, p - 1);
scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
- /* push vfifo until we can successfully calibrate. We can do this
- because the largest possible margin in 1 VFIFO cycle */
+ //USER push vfifo until we can successfully calibrate. We can do this because
+ //USER the largest possible margin in 1 VFIFO cycle
for (i = 0; i < VFIFO_SIZE; i++) {
- pr_debug("find_dqs_en_phase: center: vfifo=%u\n", vfifo_idx);
- if (rw_mgr_mem_calibrate_read_test_all_ranks (grp, 1,
- PASS_ONE_BIT, &bit_chk, 0)) {
+ DPRINT(2, "find_dqs_en_phase: center: vfifo=%lu", BFM_GBL_GET(vfifo_idx));
+ if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
break;
}
-
- /* fiddle with FIFO */
+ //USER fiddle with FIFO
rw_mgr_incr_vfifo(grp, &v);
}
if (i >= VFIFO_SIZE) {
- pr_debug("find_dqs_en_phase: center: failed\n");
+ DPRINT(2, "find_dqs_en_phase: center: failed");
return 0;
}
- pr_debug("find_dqs_en_phase: center found: vfifo=%u ptap=%u "
- "dtap=%u\n", vfifo_idx, p-1, d);
+ DPRINT(2, "find_dqs_en_phase: center found: vfifo=%li ptap=%lu dtap=%lu",
+ BFM_GBL_GET(vfifo_idx), p - 1, d);
+ BFM_GBL_SET(dqs_enable_mid[grp].v, BFM_GBL_GET(vfifo_idx));
+ BFM_GBL_SET(dqs_enable_mid[grp].p, p - 1);
+ BFM_GBL_SET(dqs_enable_mid[grp].d, d);
+ BFM_GBL_SET(dqs_enable_mid[grp].ps, work_mid);
return 1;
}
-/* Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different
-dq_in_delay values */
-static uint32_t
-rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay(uint32_t write_group, uint32_t read_group, uint32_t test_bgn)
+#if 0
+// Ryan's algorithm
+
+static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
{
-#if STRATIXV || ARRIAV || CYCLONEV || ARRIAVGZ
- uint32_t found;
- uint32_t i;
- uint32_t p;
- uint32_t d;
- uint32_t r;
- const uint32_t delay_step = IO_IO_IN_DELAY_MAX / (RW_MGR_MEM_DQ_PER_READ_DQS - 1);
- /* we start at zero, so have one less dq to devide among */
+ uint32_t i, d, v, p;
+ uint32_t min_working_p, max_working_p, min_working_d, max_working_d, max_working_cnt;
+ uint32_t fail_cnt;
+ t_btfld bit_chk;
+ uint32_t dtaps_per_ptap;
+ uint32_t found_begin, found_end;
+ uint32_t tmp_delay;
- /* try different dq_in_delays since the dq path is shorter than dqs */
+ TRACE_FUNC("%lu", grp);
- for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) {
- for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS;
- i++, p++, d += delay_step) {
- pr_debug("rw_mgr_mem_calibrate_vfifo_find_dqs_"
- "en_phase_sweep_dq_in_delay: g=%u/%u "
- "r=%u, i=%u p=%u d=%u\n",
- write_group, read_group, r, i, p, d);
- scc_mgr_set_dq_in_delay(write_group, p, d);
- scc_mgr_load_dq (p);
- }
- IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
- }
+ reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
- found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group);
+ scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
+ scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
- pr_debug("rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq"
- "_in_delay: g=%u/%u found=%u; Reseting delay chain to zero\n",
- write_group, read_group, found);
+ fail_cnt = 0;
- for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS;
- r += NUM_RANKS_PER_SHADOW_REG) {
- for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS;
- i++, p++) {
- scc_mgr_set_dq_in_delay(write_group, p, 0);
- scc_mgr_load_dq (p);
- }
- IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
- }
+ //USER **************************************************************
+ //USER * Step 0 : Determine number of delay taps for each phase tap *
- return found;
-#else
- return rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group);
-#endif
-}
+ dtaps_per_ptap = 0;
+ tmp_delay = 0;
+ while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
+ dtaps_per_ptap++;
+ tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
+ }
+ dtaps_per_ptap--;
-/* per-bit deskew DQ and center */
-static uint32_t rw_mgr_mem_calibrate_vfifo_center (uint32_t rank_bgn,
- uint32_t write_group, uint32_t read_group, uint32_t test_bgn,
- uint32_t use_read_test, uint32_t update_fom)
-{
- uint32_t i, p, d, min_index;
- /* Store these as signed since there are comparisons with
- signed numbers */
- t_btfld bit_chk;
- t_btfld sticky_bit_chk;
- int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
- int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
- int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
- int32_t mid;
- int32_t orig_mid_min, mid_min;
- int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs,
- final_dqs_en;
- int32_t dq_margin, dqs_margin;
- uint32_t stop;
+ //USER *********************************************************
+ //USER * Step 1 : First push vfifo until we get a failing read *
+ for (v = 0; v < VFIFO_SIZE;) {
+ if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
+ fail_cnt++;
- ALTERA_ASSERT(read_group < RW_MGR_MEM_IF_READ_DQS_WIDTH);
- ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
+ if (fail_cnt == 2) {
+ break;
+ }
+ }
+ //USER fiddle with FIFO
+ rw_mgr_incr_vfifo(grp, &v);
+ }
- start_dqs = READ_SCC_DQS_IN_DELAY(read_group);
- if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
- start_dqs_en = READ_SCC_DQS_EN_DELAY(read_group);
+ if (i >= VFIFO_SIZE) {
+ //USER no failing read found!! Something must have gone wrong
+ return 0;
}
- /* per-bit deskew */
+ max_working_cnt = 0;
+ min_working_p = 0;
- /* set the left and right edge of each bit to an illegal value */
- /* use (IO_IO_IN_DELAY_MAX + 1) as an illegal value */
- sticky_bit_chk = 0;
- for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
- left_edge[i] = IO_IO_IN_DELAY_MAX + 1;
- right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
- }
+ //USER ********************************************************
+ //USER * step 2: find first working phase, increment in ptaps *
+ found_begin = 0;
+ for (d = 0; d <= dtaps_per_ptap; d++) {
+ scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
- /* Search for the left edge of the window for each bit */
- for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
- scc_mgr_apply_group_dq_in_delay (write_group, test_bgn, d);
+ for (i = 0; i < VFIFO_SIZE; i++) {
+ for (p = 0; p <= IO_DQS_EN_PHASE_MAX; p++) {
+ scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
- IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+ if (rw_mgr_mem_calibrate_read_test_all_ranks
+ (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
+ max_working_cnt = 1;
+ found_begin = 1;
+ break;
+ }
+ }
- /* Stop searching when the read test doesn't pass AND when
- we've seen a passing read on every bit */
- if (use_read_test) {
- stop = !rw_mgr_mem_calibrate_read_test (rank_bgn,
- read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
- &bit_chk, 0, 0);
- } else {
- rw_mgr_mem_calibrate_write_test (rank_bgn, write_group,
- 0, PASS_ONE_BIT, &bit_chk, 0);
- bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
- (read_group - (write_group * RW_MGR_NUM_DQS_PER_WRITE_GROUP)));
- stop = (bit_chk == 0);
+ if (found_begin) {
+ break;
+ }
+
+ if (p > IO_DQS_EN_PHASE_MAX) {
+ //USER fiddle with FIFO
+ rw_mgr_incr_vfifo(grp, &v);
+ }
}
- sticky_bit_chk = sticky_bit_chk | bit_chk;
- stop = stop && (sticky_bit_chk == param->read_correct_mask);
- pr_debug("vfifo_center(left): dtap=%u => " BTFLD_FMT " == "
- BTFLD_FMT " && %u\n", d, sticky_bit_chk,
- param->read_correct_mask, stop);
- if (stop == 1)
+ if (found_begin) {
break;
- for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
- if (bit_chk & 1) {
- /* Remember a passing test as the
- left_edge */
- left_edge[i] = d;
- } else {
- /* If a left edge has not been seen yet,
- then a future passing test will mark
- this edge as the right edge */
- if (left_edge[i] ==
- IO_IO_IN_DELAY_MAX + 1) {
- right_edge[i] = -(d + 1);
- }
- }
- pr_debug("vfifo_center[l,d=%u]: "
- "bit_chk_test=%d left_edge[%u]: "
- "%d right_edge[%u]: %d\n",
- d, (int)(bit_chk & 1), i, left_edge[i],
- i, right_edge[i]);
- bit_chk = bit_chk >> 1;
}
}
- /* Reset DQ delay chains to 0 */
- scc_mgr_apply_group_dq_in_delay (write_group, test_bgn, 0);
- sticky_bit_chk = 0;
- for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
+ if (i >= VFIFO_SIZE) {
+ //USER cannot find working solution
+ return 0;
+ }
- pr_debug("vfifo_center: left_edge[%u]: %d right_edge[%u]: "
- "%d\n", i, left_edge[i], i, right_edge[i]);
+ min_working_p = p;
- /* Check for cases where we haven't found the left edge,
- which makes our assignment of the the right edge invalid.
- Reset it to the illegal value. */
- if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) && (
- right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
- right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
- pr_debug("vfifo_center: reset right_edge[%u]: %d\n",
- i, right_edge[i]);
- }
+ //USER If d is 0 then the working window covers a phase tap and we can follow the old procedure
+ //USER otherwise, we've found the beginning, and we need to increment the dtaps until we find the end
+ if (d == 0) {
+ //USER ********************************************************************
+ //USER * step 3a: if we have room, back off by one and increment in dtaps *
+ min_working_d = 0;
- /* Reset sticky bit (except for bits where we have seen
- both the left and right edge) */
- sticky_bit_chk = sticky_bit_chk << 1;
- if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1) &&
- (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
- sticky_bit_chk = sticky_bit_chk | 1;
+ //USER Special case code for backing up a phase
+ if (p == 0) {
+ p = IO_DQS_EN_PHASE_MAX;
+ rw_mgr_decr_vfifo(grp, &v);
+ } else {
+ p = p - 1;
}
+ scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
- if (i == 0)
- break;
+ found_begin = 0;
+ for (d = 0; d <= dtaps_per_ptap; d++) {
+ scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
+
+ if (rw_mgr_mem_calibrate_read_test_all_ranks
+ (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
+ found_begin = 1;
+ min_working_d = d;
+ break;
+ }
+ }
+
+ //USER We have found a working dtap before the ptap found above
+ if (found_begin == 1) {
+ min_working_p = p;
+ max_working_cnt++;
+ }
+ //USER Restore VFIFO to old state before we decremented it
+ p = p + 1;
+ if (p > IO_DQS_EN_PHASE_MAX) {
+ p = 0;
+ rw_mgr_incr_vfifo(grp, &v);
+ }
+
+ scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
+
+ //USER ***********************************************************************************
+ //USER * step 4a: go forward from working phase to non working phase, increment in ptaps *
+ p = p + 1;
+ if (p > IO_DQS_EN_PHASE_MAX) {
+ //USER fiddle with FIFO
+ p = 0;
+ rw_mgr_incr_vfifo(grp, &v);
+ }
+
+ found_end = 0;
+ for (; i < VFIFO_SIZE + 1; i++) {
+ for (; p <= IO_DQS_EN_PHASE_MAX; p++) {
+ scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
+
+ if (!rw_mgr_mem_calibrate_read_test_all_ranks
+ (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
+ found_end = 1;
+ break;
+ } else {
+ max_working_cnt++;
+ }
+ }
+
+ if (found_end) {
+ break;
+ }
+
+ if (p > IO_DQS_EN_PHASE_MAX) {
+ //USER fiddle with FIFO
+ rw_mgr_incr_vfifo(grp, &v);
+ p = 0;
+ }
+ }
+
+ if (i >= VFIFO_SIZE + 1) {
+ //USER cannot see edge of failing read
+ return 0;
+ }
+ //USER *********************************************************
+ //USER * step 5a: back off one from last, increment in dtaps *
+ max_working_d = 0;
+
+ //USER Special case code for backing up a phase
+ if (p == 0) {
+ p = IO_DQS_EN_PHASE_MAX;
+ rw_mgr_decr_vfifo(grp, &v);
+ } else {
+ p = p - 1;
+ }
+
+ max_working_p = p;
+ scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
+
+ for (d = 0; d <= IO_DQS_EN_DELAY_MAX; d++) {
+ scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
+
+ if (!rw_mgr_mem_calibrate_read_test_all_ranks
+ (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
+ break;
+ }
+ }
+
+ //USER Go back to working dtap
+ if (d != 0) {
+ max_working_d = d - 1;
+ }
+
+ } else {
+
+ //USER ********************************************************************
+ //USER * step 3-5b: Find the right edge of the window using delay taps *
+
+ max_working_p = min_working_p;
+ min_working_d = d;
+
+ for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
+ scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
+
+ if (!rw_mgr_mem_calibrate_read_test_all_ranks
+ (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
+ break;
+ }
+ }
+
+ //USER Go back to working dtap
+ if (d != 0) {
+ max_working_d = d - 1;
+ }
+ //USER Only here to counterbalance a subtract later on which is not needed if this branch
+ //USER of the algorithm is taken
+ max_working_cnt++;
+ }
+
+ //USER ********************************************
+ //USER * step 6: Find the centre of the window *
+
+ //USER If the number of working phases is even we will step back a phase and find the
+ //USER edge with a larger delay chain tap
+ if ((max_working_cnt & 1) == 0) {
+ p = min_working_p + (max_working_cnt - 1) / 2;
+
+ //USER Special case code for backing up a phase
+ if (max_working_p == 0) {
+ max_working_p = IO_DQS_EN_PHASE_MAX;
+ rw_mgr_decr_vfifo(grp, &v);
+ } else {
+ max_working_p = max_working_p - 1;
+ }
+
+ scc_mgr_set_dqs_en_phase_all_ranks(grp, max_working_p);
+
+ //USER Code to determine at which dtap we should start searching again for a failure
+ //USER If we've moved back such that the max and min p are the same, we should start searching
+ //USER from where the window actually exists
+ if (max_working_p == min_working_p) {
+ d = min_working_d;
+ } else {
+ d = max_working_d;
+ }
+
+ for (; d <= IO_DQS_EN_DELAY_MAX; d++) {
+ scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
+
+ if (!rw_mgr_mem_calibrate_read_test_all_ranks
+ (grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
+ break;
+ }
+ }
+
+ //USER Go back to working dtap
+ if (d != 0) {
+ max_working_d = d - 1;
+ }
+ } else {
+ p = min_working_p + (max_working_cnt) / 2;
+ }
+
+ while (p > IO_DQS_EN_PHASE_MAX) {
+ p -= (IO_DQS_EN_PHASE_MAX + 1);
+ }
+
+ d = (min_working_d + max_working_d) / 2;
+
+ scc_mgr_set_dqs_en_phase_all_ranks(grp, p);
+ scc_mgr_set_dqs_en_delay_all_ranks(grp, d);
+
+ //USER push vfifo until we can successfully calibrate
+
+ for (i = 0; i < VFIFO_SIZE; i++) {
+ if (rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
+ break;
+ }
+ //USER fiddle with FIFO
+ rw_mgr_incr_vfifo(grp, &v);
+ }
+
+ if (i >= VFIFO_SIZE) {
+ return 0;
+ }
+
+ return 1;
+}
+
+#endif
+
+#else
+// Val's original version
+
+static uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(uint32_t grp)
+{
+ uint32_t i, j, v, d;
+ uint32_t min_working_d, max_working_cnt;
+ uint32_t fail_cnt;
+ t_btfld bit_chk;
+ uint32_t delay_per_ptap_mid;
+
+ reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
+
+ scc_mgr_set_dqs_en_delay_all_ranks(grp, 0);
+ scc_mgr_set_dqs_en_phase_all_ranks(grp, 0);
+
+ fail_cnt = 0;
+
+ //USER first push vfifo until we get a failing read
+ v = 0;
+ for (i = 0; i < VFIFO_SIZE; i++) {
+ if (!rw_mgr_mem_calibrate_read_test_all_ranks(grp, 1, PASS_ONE_BIT, &bit_chk, 0)) {
+ fail_cnt++;
+
+ if (fail_cnt == 2) {
+ break;
+ }
+ }
+ //USER fiddle with FIFO
+ rw_mgr_incr_vfifo(grp, &v);
+ }
+
+ if (v >= VFIFO_SIZE) {
+ //USER no failing read found!! Something must have gone wrong
+
+ return 0;
+ }
+
+ max_working_cnt = 0;
+ min_working_d = 0;
+
+ for (i = 0; i < VFIFO_SIZE + 1; i++) {
+ for (d = 0; d <= IO_DQS_EN_PHASE_MAX; d++) {
+ scc_mgr_set_dqs_en_phase_all_ranks(grp, d);
+
+ rw_mgr_mem_calibrate_read_test_all_ranks(grp, NUM_READ_PB_TESTS,
+ PASS_ONE_BIT, &bit_chk, 0);
+ if (bit_chk) {
+ //USER passing read
+
+ if (max_working_cnt == 0) {
+ min_working_d = d;
+ }
+
+ max_working_cnt++;
+ } else {
+ if (max_working_cnt > 0) {
+ //USER already have one working value
+ break;
+ }
+ }
+ }
+
+ if (d > IO_DQS_EN_PHASE_MAX) {
+ //USER fiddle with FIFO
+ rw_mgr_incr_vfifo(grp, &v);
+ } else {
+ //USER found working solution!
+
+ d = min_working_d + (max_working_cnt - 1) / 2;
+
+ while (d > IO_DQS_EN_PHASE_MAX) {
+ d -= (IO_DQS_EN_PHASE_MAX + 1);
+ }
+
+ break;
+ }
+ }
+
+ if (i >= VFIFO_SIZE + 1) {
+ //USER cannot find working solution or cannot see edge of failing read
+
+ return 0;
+ }
+ //USER in the case the number of working steps is even, use 50ps taps to further center the window
+
+ if ((max_working_cnt & 1) == 0) {
+ delay_per_ptap_mid = IO_DELAY_PER_OPA_TAP / 2;
+
+ //USER increment in 50ps taps until we reach the required amount
+
+ for (i = 0, j = 0; i <= IO_DQS_EN_DELAY_MAX && j < delay_per_ptap_mid;
+ i++, j += IO_DELAY_PER_DQS_EN_DCHAIN_TAP) ;
+
+ scc_mgr_set_dqs_en_delay_all_ranks(grp, i - 1);
+ }
+
+ scc_mgr_set_dqs_en_phase_all_ranks(grp, d);
+
+ //USER push vfifo until we can successfully calibrate
+
+ for (i = 0; i < VFIFO_SIZE; i++) {
+ if (rw_mgr_mem_calibrate_read_test_all_ranks
+ (grp, NUM_READ_PB_TESTS, PASS_ONE_BIT, &bit_chk, 0)) {
+ break;
+ }
+ //USER fiddle with FIFO
+ rw_mgr_incr_vfifo(grp, &v);
}
- /* Search for the right edge of the window for each bit */
+ if (i >= VFIFO_SIZE) {
+ return 0;
+ }
+
+ return 1;
+}
+
+#endif
+
+// Try rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase across different dq_in_delay values
+static inline uint32_t rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay(uint32_t
+ write_group,
+ uint32_t
+ read_group,
+ uint32_t
+ test_bgn)
+{
+ uint32_t found;
+ uint32_t i;
+ uint32_t p;
+ uint32_t d;
+ uint32_t r;
+
+ const uint32_t delay_step = IO_IO_IN_DELAY_MAX / (RW_MGR_MEM_DQ_PER_READ_DQS - 1);
+
+ // try different dq_in_delays since the dq path is shorter than dqs
+
+ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) {
+ select_shadow_regs_for_update(r, write_group, 1);
+ for (i = 0, p = test_bgn, d = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS;
+ i++, p++, d += delay_step) {
+ DPRINT(1,
+ "rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay: g=%lu/%lu r=%lu, i=%lu p=%lu d=%lu",
+ write_group, read_group, r, i, p, d);
+ scc_mgr_set_dq_in_delay(write_group, p, d);
+ scc_mgr_load_dq(p);
+ }
+ IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+ }
+
+ found = rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase(read_group);
+
+ DPRINT(1,
+ "rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay: g=%lu/%lu found=%lu; Reseting delay chain to zero",
+ write_group, read_group, found);
+
+ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) {
+ select_shadow_regs_for_update(r, write_group, 1);
+ for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
+ scc_mgr_set_dq_in_delay(write_group, p, 0);
+ scc_mgr_load_dq(p);
+ }
+ IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+ }
+
+ return found;
+}
+
+//USER per-bit deskew DQ and center
+
+#if NEWVERSION_RDDESKEW
+
+static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn, uint32_t write_group,
+ uint32_t read_group, uint32_t test_bgn,
+ uint32_t use_read_test, uint32_t update_fom)
+{
+ uint32_t i, p, d, min_index;
+ //USER Store these as signed since there are comparisons with signed numbers
+ t_btfld bit_chk;
+ t_btfld sticky_bit_chk;
+ int32_t left_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
+ int32_t right_edge[RW_MGR_MEM_DQ_PER_READ_DQS];
+ int32_t final_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
+ int32_t mid;
+ int32_t orig_mid_min, mid_min;
+ int32_t new_dqs, start_dqs, start_dqs_en, shift_dq, final_dqs, final_dqs_en;
+ int32_t dq_margin, dqs_margin;
+ uint32_t stop;
+
+ start_dqs = READ_SCC_DQS_IN_DELAY(read_group);
+ if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
+ start_dqs_en = READ_SCC_DQS_EN_DELAY(read_group);
+ }
+
+ select_curr_shadow_reg_using_rank(rank_bgn);
+
+ //USER per-bit deskew
+
+ //USER set the left and right edge of each bit to an illegal value
+ //USER use (IO_IO_IN_DELAY_MAX + 1) as an illegal value
+ sticky_bit_chk = 0;
+ for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
+ left_edge[i] = IO_IO_IN_DELAY_MAX + 1;
+ right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
+ }
+
+ //USER Search for the left edge of the window for each bit
+ for (d = 0; d <= IO_IO_IN_DELAY_MAX; d++) {
+ scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
+
+ IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+
+ //USER Stop searching when the read test doesn't pass AND when we've seen a passing read on every bit
+ if (use_read_test) {
+ stop =
+ !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group, NUM_READ_PB_TESTS,
+ PASS_ONE_BIT, &bit_chk, 0, 0);
+ } else {
+ rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0, PASS_ONE_BIT,
+ &bit_chk, 0);
+ bit_chk =
+ bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
+ (read_group -
+ (write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH /
+ RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
+ stop = (bit_chk == 0);
+ }
+ sticky_bit_chk = sticky_bit_chk | bit_chk;
+ stop = stop && (sticky_bit_chk == param->read_correct_mask);
+ DPRINT(2, "vfifo_center(left): dtap=%lu => " BTFLD_FMT " == " BTFLD_FMT " && %lu",
+ d, sticky_bit_chk, param->read_correct_mask, stop);
+
+ if (stop == 1) {
+ break;
+ } else {
+ for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
+ if (bit_chk & 1) {
+ //USER Remember a passing test as the left_edge
+ left_edge[i] = d;
+ } else {
+ //USER If a left edge has not been seen yet, then a future passing test will mark this edge as the right edge
+ if (left_edge[i] == IO_IO_IN_DELAY_MAX + 1) {
+ right_edge[i] = -(d + 1);
+ }
+ }
+ DPRINT(2,
+ "vfifo_center[l,d=%lu]: bit_chk_test=%d left_edge[%lu]: %ld right_edge[%lu]: %ld",
+ d, (int)(bit_chk & 1), i, left_edge[i], i, right_edge[i]);
+ bit_chk = bit_chk >> 1;
+ }
+ }
+ }
+
+ //USER Reset DQ delay chains to 0
+ scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, 0);
+ sticky_bit_chk = 0;
+ for (i = RW_MGR_MEM_DQ_PER_READ_DQS - 1;; i--) {
+
+ DPRINT(2, "vfifo_center: left_edge[%lu]: %ld right_edge[%lu]: %ld", i, left_edge[i],
+ i, right_edge[i]);
+
+ //USER Check for cases where we haven't found the left edge, which makes our assignment of the the
+ //USER right edge invalid. Reset it to the illegal value.
+ if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1)
+ && (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
+ right_edge[i] = IO_IO_IN_DELAY_MAX + 1;
+ DPRINT(2, "vfifo_center: reset right_edge[%lu]: %ld", i, right_edge[i]);
+ }
+ //USER Reset sticky bit (except for bits where we have seen both the left and right edge)
+ sticky_bit_chk = sticky_bit_chk << 1;
+ if ((left_edge[i] != IO_IO_IN_DELAY_MAX + 1)
+ && (right_edge[i] != IO_IO_IN_DELAY_MAX + 1)) {
+ sticky_bit_chk = sticky_bit_chk | 1;
+ }
+
+ if (i == 0) {
+ break;
+ }
+ }
+
+ //USER Search for the right edge of the window for each bit
for (d = 0; d <= IO_DQS_IN_DELAY_MAX - start_dqs; d++) {
scc_mgr_set_dqs_bus_in_delay(read_group, d + start_dqs);
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
@@ -2522,110 +2703,101 @@ static uint32_t rw_mgr_mem_calibrate_vfifo_center (uint32_t rank_bgn,
}
scc_mgr_set_dqs_en_delay(read_group, delay);
}
- scc_mgr_load_dqs (read_group);
+ scc_mgr_load_dqs(read_group);
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
- /* Stop searching when the read test doesn't pass AND when
- we've seen a passing read on every bit */
+ //USER Stop searching when the read test doesn't pass AND when we've seen a passing read on every bit
if (use_read_test) {
- stop = !rw_mgr_mem_calibrate_read_test (rank_bgn,
- read_group, NUM_READ_PB_TESTS, PASS_ONE_BIT,
- &bit_chk, 0, 0);
+ stop =
+ !rw_mgr_mem_calibrate_read_test(rank_bgn, read_group, NUM_READ_PB_TESTS,
+ PASS_ONE_BIT, &bit_chk, 0, 0);
} else {
- rw_mgr_mem_calibrate_write_test (rank_bgn, write_group,
- 0, PASS_ONE_BIT, &bit_chk, 0);
- bit_chk = bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
- (read_group - (write_group * RW_MGR_NUM_DQS_PER_WRITE_GROUP)));
+ rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0, PASS_ONE_BIT,
+ &bit_chk, 0);
+ bit_chk =
+ bit_chk >> (RW_MGR_MEM_DQ_PER_READ_DQS *
+ (read_group -
+ (write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH /
+ RW_MGR_MEM_IF_WRITE_DQS_WIDTH)));
stop = (bit_chk == 0);
}
sticky_bit_chk = sticky_bit_chk | bit_chk;
stop = stop && (sticky_bit_chk == param->read_correct_mask);
- pr_debug("vfifo_center(right): dtap=%u => " BTFLD_FMT " == "
- BTFLD_FMT " && %u\n", d, sticky_bit_chk,
- param->read_correct_mask, stop);
+ DPRINT(2, "vfifo_center(right): dtap=%lu => " BTFLD_FMT " == " BTFLD_FMT " && %lu",
+ d, sticky_bit_chk, param->read_correct_mask, stop);
if (stop == 1) {
break;
} else {
for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
if (bit_chk & 1) {
- /* Remember a passing test as
- the right_edge */
+ //USER Remember a passing test as the right_edge
right_edge[i] = d;
} else {
if (d != 0) {
- /* If a right edge has not been
- seen yet, then a future passing
- test will mark this edge as the
- left edge */
- if (right_edge[i] ==
- IO_IO_IN_DELAY_MAX + 1) {
+ //USER If a right edge has not been seen yet, then a future passing test will mark this edge as the left edge
+ if (right_edge[i] == IO_IO_IN_DELAY_MAX + 1) {
left_edge[i] = -(d + 1);
}
} else {
- /* d = 0 failed, but it passed
- when testing the left edge,
- so it must be marginal,
- set it to -1 */
- if (right_edge[i] ==
- IO_IO_IN_DELAY_MAX + 1
- && left_edge[i] !=
- IO_IO_IN_DELAY_MAX
- + 1) {
+ //USER d = 0 failed, but it passed when testing the left edge, so it must be marginal, set it to -1
+ if (right_edge[i] == IO_IO_IN_DELAY_MAX + 1
+ && left_edge[i] != IO_IO_IN_DELAY_MAX + 1) {
right_edge[i] = -1;
}
- /* If a right edge has not been
- seen yet, then a future passing
- test will mark this edge as the
- left edge */
- else if (right_edge[i] ==
- IO_IO_IN_DELAY_MAX +
- 1) {
+ //USER If a right edge has not been seen yet, then a future passing test will mark this edge as the left edge
+ else if (right_edge[i] == IO_IO_IN_DELAY_MAX + 1) {
left_edge[i] = -(d + 1);
}
}
}
- pr_debug("vfifo_center[r,d=%u]: "
- "bit_chk_test=%d left_edge[%u]: %d "
- "right_edge[%u]: %d\n",
- d, (int)(bit_chk & 1), i, left_edge[i],
- i, right_edge[i]);
+ DPRINT(2,
+ "vfifo_center[r,d=%lu]: bit_chk_test=%d left_edge[%lu]: %ld right_edge[%lu]: %ld",
+ d, (int)(bit_chk & 1), i, left_edge[i], i, right_edge[i]);
bit_chk = bit_chk >> 1;
}
}
}
- /* Store all observed margins */
+ // Store all observed margins
- /* Check that all bits have a window */
+ //USER Check that all bits have a window
for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
- pr_debug("vfifo_center: left_edge[%u]: %d right_edge[%u]:"
- " %d\n", i, left_edge[i], i, right_edge[i]);
- if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1) || (right_edge[i]
- == IO_IO_IN_DELAY_MAX + 1)) {
-
- /* Restore delay chain settings before letting the loop
- in rw_mgr_mem_calibrate_vfifo to retry different
- dqs/ck relationships */
+ DPRINT(2, "vfifo_center: left_edge[%lu]: %ld right_edge[%lu]: %ld", i, left_edge[i],
+ i, right_edge[i]);
+ BFM_GBL_SET(dq_read_left_edge[read_group][i], left_edge[i]);
+ BFM_GBL_SET(dq_read_right_edge[read_group][i], right_edge[i]);
+ if ((left_edge[i] == IO_IO_IN_DELAY_MAX + 1)
+ || (right_edge[i] == IO_IO_IN_DELAY_MAX + 1)) {
+
+ //USER Restore delay chain settings before letting the loop in
+ //USER rw_mgr_mem_calibrate_vfifo to retry different dqs/ck relationships
scc_mgr_set_dqs_bus_in_delay(read_group, start_dqs);
if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
- scc_mgr_set_dqs_en_delay(read_group,
- start_dqs_en);
+ scc_mgr_set_dqs_en_delay(read_group, start_dqs_en);
}
- scc_mgr_load_dqs (read_group);
+ scc_mgr_load_dqs(read_group);
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
- pr_debug("vfifo_center: failed to find edge [%u]: "
- "%d %d\n", i, left_edge[i], right_edge[i]);
+ DPRINT(1, "vfifo_center: failed to find edge [%lu]: %ld %ld", i,
+ left_edge[i], right_edge[i]);
+ if (use_read_test) {
+ set_failing_group_stage(read_group * RW_MGR_MEM_DQ_PER_READ_DQS + i,
+ CAL_STAGE_VFIFO, CAL_SUBSTAGE_VFIFO_CENTER);
+ } else {
+ set_failing_group_stage(read_group * RW_MGR_MEM_DQ_PER_READ_DQS + i,
+ CAL_STAGE_VFIFO_AFTER_WRITES,
+ CAL_SUBSTAGE_VFIFO_CENTER);
+ }
return 0;
}
}
- /* Find middle of window for each DQ bit */
+ //USER Find middle of window for each DQ bit
mid_min = left_edge[0] - right_edge[0];
min_index = 0;
for (i = 1; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
@@ -2636,412 +2808,626 @@ static uint32_t rw_mgr_mem_calibrate_vfifo_center (uint32_t rank_bgn,
}
}
- /* -mid_min/2 represents the amount that we need to move DQS.
- If mid_min is odd and positive we'll need to add one to
- make sure the rounding in further calculations is correct
- (always bias to the right), so just add 1 for all positive values */
+ //USER -mid_min/2 represents the amount that we need to move DQS. If mid_min is odd and positive we'll need to add one to
+ //USER make sure the rounding in further calculations is correct (always bias to the right), so just add 1 for all positive values
if (mid_min > 0) {
mid_min++;
}
mid_min = mid_min / 2;
- pr_debug("vfifo_center: mid_min=%d (index=%u)\n", mid_min, min_index);
+ DPRINT(1, "vfifo_center: mid_min=%ld (index=%lu)", mid_min, min_index);
- /* Determine the amount we can change DQS (which is -mid_min) */
+ //USER Determine the amount we can change DQS (which is -mid_min)
orig_mid_min = mid_min;
- new_dqs = start_dqs;
- mid_min = 0;
+ new_dqs = start_dqs - mid_min;
+ if (new_dqs > IO_DQS_IN_DELAY_MAX) {
+ new_dqs = IO_DQS_IN_DELAY_MAX;
+ } else if (new_dqs < 0) {
+ new_dqs = 0;
+ }
+ mid_min = start_dqs - new_dqs;
+ DPRINT(1, "vfifo_center: new mid_min=%ld new_dqs=%ld", mid_min, new_dqs);
+
+ if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
+ if (start_dqs_en - mid_min > IO_DQS_EN_DELAY_MAX) {
+ mid_min += start_dqs_en - mid_min - IO_DQS_EN_DELAY_MAX;
+ } else if (start_dqs_en - mid_min < 0) {
+ mid_min += start_dqs_en - mid_min;
+ }
+ }
+ new_dqs = start_dqs - mid_min;
- pr_debug("vfifo_center: start_dqs=%d start_dqs_en=%d "
- "new_dqs=%d mid_min=%d\n",
- start_dqs, IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1,
- new_dqs, mid_min);
+ DPRINT(1, "vfifo_center: start_dqs=%ld start_dqs_en=%ld new_dqs=%ld mid_min=%ld",
+ start_dqs, IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS ? start_dqs_en : -1, new_dqs, mid_min);
- /* Initialize data for export structures */
+ //USER Initialize data for export structures
dqs_margin = IO_IO_IN_DELAY_MAX + 1;
- dq_margin = IO_IO_IN_DELAY_MAX + 1;
+ dq_margin = IO_IO_IN_DELAY_MAX + 1;
- /* add delay to bring centre of all DQ windows to the same "level" */
+ //USER add delay to bring centre of all DQ windows to the same "level"
for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
- /* Use values before divide by 2 to reduce round off error */
- shift_dq = (left_edge[i] - right_edge[i] -
- (left_edge[min_index] - right_edge[min_index]))/2 +
- (orig_mid_min - mid_min);
-
- pr_debug("vfifo_center: before: shift_dq[%u]=%d\n", i,
- shift_dq);
-
- if (shift_dq + (int32_t)READ_SCC_DQ_IN_DELAY(p) >
- (int32_t)IO_IO_IN_DELAY_MAX) {
- shift_dq = (int32_t)IO_IO_IN_DELAY_MAX -
- READ_SCC_DQ_IN_DELAY(i);
- } else if (shift_dq + (int32_t)READ_SCC_DQ_IN_DELAY(p) < 0) {
- shift_dq = -(int32_t)READ_SCC_DQ_IN_DELAY(p);
- }
- pr_debug("vfifo_center: after: shift_dq[%u]=%d\n", i,
- shift_dq);
+ //USER Use values before divide by 2 to reduce round off error
+ shift_dq =
+ (left_edge[i] - right_edge[i] -
+ (left_edge[min_index] - right_edge[min_index])) / 2 + (orig_mid_min - mid_min);
+
+ DPRINT(2, "vfifo_center: before: shift_dq[%lu]=%ld", i, shift_dq);
+
+ if (shift_dq + (int32_t) READ_SCC_DQ_IN_DELAY(p) > (int32_t) IO_IO_IN_DELAY_MAX) {
+ shift_dq = (int32_t) IO_IO_IN_DELAY_MAX - READ_SCC_DQ_IN_DELAY(i);
+ } else if (shift_dq + (int32_t) READ_SCC_DQ_IN_DELAY(p) < 0) {
+ shift_dq = -(int32_t) READ_SCC_DQ_IN_DELAY(p);
+ }
+ DPRINT(2, "vfifo_center: after: shift_dq[%lu]=%ld", i, shift_dq);
final_dq[i] = READ_SCC_DQ_IN_DELAY(p) + shift_dq;
scc_mgr_set_dq_in_delay(write_group, p, final_dq[i]);
- scc_mgr_load_dq (p);
+ scc_mgr_load_dq(p);
+
+ DPRINT(2, "vfifo_center: margin[%lu]=[%ld,%ld]", i,
+ left_edge[i] - shift_dq + (-mid_min), right_edge[i] + shift_dq - (-mid_min));
+ //USER To determine values for export structures
+ if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) {
+ dq_margin = left_edge[i] - shift_dq + (-mid_min);
+ }
+ if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) {
+ dqs_margin = right_edge[i] + shift_dq - (-mid_min);
+ }
+ }
+
+ final_dqs = new_dqs;
+ if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
+ final_dqs_en = start_dqs_en - mid_min;
+ }
+ //USER Move DQS-en
+ if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
+ scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
+ scc_mgr_load_dqs(read_group);
+ }
+ //USER Move DQS
+ scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
+ scc_mgr_load_dqs(read_group);
+
+ if (update_fom) {
+ //USER Export values
+ gbl->fom_in +=
+ (dq_margin +
+ dqs_margin) / (RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
+ }
+
+ DPRINT(2, "vfifo_center: dq_margin=%ld dqs_margin=%ld", dq_margin, dqs_margin);
+
+ //USER Do not remove this line as it makes sure all of our decisions have been applied
+ IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+ return (dq_margin >= 0) && (dqs_margin >= 0);
+}
+
+#else
+
+static uint32_t rw_mgr_mem_calibrate_vfifo_center(uint32_t rank_bgn, uint32_t grp,
+ uint32_t test_bgn, uint32_t use_read_test)
+{
+ uint32_t i, p, d;
+ uint32_t mid;
+ t_btfld bit_chk;
+ uint32_t max_working_dq[RW_MGR_MEM_DQ_PER_READ_DQS];
+ uint32_t dq_margin, dqs_margin;
+ uint32_t start_dqs;
+
+ //USER per-bit deskew.
+ //USER start of the per-bit sweep with the minimum working delay setting for
+ //USER all bits.
+
+ for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
+ max_working_dq[i] = 0;
+ }
+
+ for (d = 1; d <= IO_IO_IN_DELAY_MAX; d++) {
+ scc_mgr_apply_group_dq_in_delay(write_group, test_bgn, d);
+
+ IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+
+ if (!rw_mgr_mem_calibrate_read_test
+ (rank_bgn, grp, NUM_READ_PB_TESTS, PASS_ONE_BIT, &bit_chk, 0, 0)) {
+ break;
+ } else {
+ for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
+ if (bit_chk & 1) {
+ max_working_dq[i] = d;
+ }
+ bit_chk = bit_chk >> 1;
+ }
+ }
+ }
+
+ //USER determine minimum working value for DQ
+
+ dq_margin = IO_IO_IN_DELAY_MAX;
+
+ for (i = 0; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++) {
+ if (max_working_dq[i] < dq_margin) {
+ dq_margin = max_working_dq[i];
+ }
+ }
+
+ //USER add delay to bring all DQ windows to the same "level"
+
+ for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
+ if (max_working_dq[i] > dq_margin) {
+ scc_mgr_set_dq_in_delay(write_group, i, max_working_dq[i] - dq_margin);
+ } else {
+ scc_mgr_set_dq_in_delay(write_group, i, 0);
+ }
+
+ scc_mgr_load_dq(p, p);
+ }
+
+ //USER sweep DQS window, may potentially have more window due to per-bit-deskew that was done
+ //USER in the previous step.
+
+ start_dqs = READ_SCC_DQS_IN_DELAY(grp);
+
+ for (d = start_dqs + 1; d <= IO_DQS_IN_DELAY_MAX; d++) {
+ scc_mgr_set_dqs_bus_in_delay(grp, d);
+ scc_mgr_load_dqs(grp);
+
+ IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+
+ if (!rw_mgr_mem_calibrate_read_test
+ (rank_bgn, grp, NUM_READ_TESTS, PASS_ALL_BITS, &bit_chk, 0, 0)) {
+ break;
+ }
+ }
+
+ scc_mgr_set_dqs_bus_in_delay(grp, start_dqs);
+
+ //USER margin on the DQS pin
+
+ dqs_margin = d - start_dqs - 1;
+
+ //USER find mid point, +1 so that we don't go crazy pushing DQ
+
+ mid = (dq_margin + dqs_margin + 1) / 2;
+
+ gbl->fom_in += dq_margin + dqs_margin;
+// TCLRPT_SET(debug_summary_report->fom_in, debug_summary_report->fom_in + (dq_margin + dqs_margin));
+// TCLRPT_SET(debug_cal_report->cal_status_per_group[grp].fom_in, (dq_margin + dqs_margin));
+
+ //USER center DQS ... if the headroom is setup properly we shouldn't need to
+
+ if (dqs_margin > mid) {
+ scc_mgr_set_dqs_bus_in_delay(grp, READ_SCC_DQS_IN_DELAY(grp) + dqs_margin - mid);
- pr_debug("vfifo_center: margin[%u]=[%d,%d]\n", i,
- left_edge[i] - shift_dq + (-mid_min),
- right_edge[i] + shift_dq - (-mid_min));
- /* To determine values for export structures */
- if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) {
- dq_margin = left_edge[i] - shift_dq + (-mid_min);
- }
- if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) {
- dqs_margin = right_edge[i] + shift_dq - (-mid_min);
+ if (DDRX) {
+ uint32_t delay = READ_SCC_DQS_EN_DELAY(grp) + dqs_margin - mid;
+
+ if (delay > IO_DQS_EN_DELAY_MAX) {
+ delay = IO_DQS_EN_DELAY_MAX;
+ }
+
+ scc_mgr_set_dqs_en_delay(grp, delay);
}
}
-#if ENABLE_DQS_IN_CENTERING
- final_dqs = new_dqs;
- if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
- final_dqs_en = start_dqs_en - mid_min;
- }
-#else
- final_dqs = start_dqs;
- if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
- final_dqs_en = start_dqs_en;
- }
-#endif
+ scc_mgr_load_dqs(grp);
- /* Move DQS-en */
- if (IO_SHIFT_DQS_EN_WHEN_SHIFT_DQS) {
- scc_mgr_set_dqs_en_delay(read_group, final_dqs_en);
- scc_mgr_load_dqs (read_group);
- }
+ //USER center DQ
- /* Move DQS */
- scc_mgr_set_dqs_bus_in_delay(read_group, final_dqs);
- scc_mgr_load_dqs (read_group);
+ if (dq_margin > mid) {
+ for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_READ_DQS; i++, p++) {
+ scc_mgr_set_dq_in_delay(write_group, i,
+ READ_SCC_DQ_IN_DELAY(i) + dq_margin - mid);
+ scc_mgr_load_dq(p, p);
+ }
- if (update_fom) {
- /* Export values */
- gbl->fom_in += (dq_margin + dqs_margin) / RW_MGR_NUM_DQS_PER_WRITE_GROUP;
+ dqs_margin += dq_margin - mid;
+ dq_margin -= dq_margin - mid;
}
- pr_debug("vfifo_center: dq_margin=%d dqs_margin=%d\n",
- dq_margin, dqs_margin);
-
- /* Do not remove this line as it makes sure all of our decisions
- have been applied */
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
- return (dq_margin >= 0) && (dqs_margin >= 0);
+
+ return (dq_margin + dqs_margin) > 0;
}
-/*
- * calibrate the read valid prediction FIFO.
- *
- * - read valid prediction will consist of finding a good DQS enable phase,
- * DQS enable delay, DQS input phase, and DQS input delay.
- * - we also do a per-bit deskew on the DQ lines.
- */
+#endif
+//USER calibrate the read valid prediction FIFO.
+//USER
+//USER - read valid prediction will consist of finding a good DQS enable phase, DQS enable delay, DQS input phase, and DQS input delay.
+//USER - we also do a per-bit deskew on the DQ lines.
+#if NEWVERSION_GW
-/* VFIFO Calibration -- Full Calibration */
-static uint32_t rw_mgr_mem_calibrate_vfifo (uint32_t read_group, uint32_t test_bgn)
+//USER VFIFO Calibration -- Full Calibration
+static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t read_group, uint32_t test_bgn)
{
- uint32_t p, d, rank_bgn;
+ uint32_t p, d, rank_bgn, sr;
uint32_t dtaps_per_ptap;
uint32_t tmp_delay;
t_btfld bit_chk;
uint32_t grp_calibrated;
uint32_t write_group, write_test_bgn;
+ uint32_t failed_substage;
- /* update info for sims */
+ //USER update info for sims
reg_file_set_stage(CAL_STAGE_VFIFO);
- write_group = read_group;
- write_test_bgn = test_bgn;
+ if (DDRX) {
+ write_group = read_group;
+ write_test_bgn = test_bgn;
+ } else {
+ write_group =
+ read_group / (RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
+ write_test_bgn = read_group * RW_MGR_MEM_DQ_PER_READ_DQS;
+ }
- /* USER Determine number of delay taps for each phase tap */
+ // USER Determine number of delay taps for each phase tap
dtaps_per_ptap = 0;
tmp_delay = 0;
-
- while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
- dtaps_per_ptap++;
- tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
+ if (!QDRII) {
+ while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
+ dtaps_per_ptap++;
+ tmp_delay += IO_DELAY_PER_DQS_EN_DCHAIN_TAP;
+ }
+ dtaps_per_ptap--;
+ tmp_delay = 0;
}
- dtaps_per_ptap--;
- tmp_delay = 0;
-
- /* update info for sims */
+ //USER update info for sims
reg_file_set_group(read_group);
grp_calibrated = 0;
reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
+ failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
for (d = 0; d <= dtaps_per_ptap && grp_calibrated == 0; d += 2) {
- /* In RLDRAMX we may be messing the delay of pins in
- the same write group but outside of the current read
- group, but that's ok because we haven't calibrated the
- output side yet. */
- if (d > 0) {
- scc_mgr_apply_group_all_out_delay_add_all_ranks
- (write_group, write_test_bgn, d);
+ if (DDRX || RLDRAMX) {
+ // In RLDRAMX we may be messing the delay of pins in the same write group but outside of
+ // the current read group, but that's ok because we haven't calibrated the output side yet.
+ if (d > 0) {
+ scc_mgr_apply_group_all_out_delay_add_all_ranks(write_group,
+ write_test_bgn, d);
+ }
}
for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0; p++) {
- /* set a particular dqdqs phase */
- scc_mgr_set_dqdqs_output_phase_all_ranks(
- read_group, p);
-
- /* Previous iteration may have failed as a result of
- ck/dqs or ck/dk violation, in which case the device may
- require special recovery. */
- if (d != 0 || p != 0)
- recover_mem_device_after_ck_dqs_violation();
+ //USER set a particular dqdqs phase
+ if (DDRX) {
+ scc_mgr_set_dqdqs_output_phase_all_ranks(read_group, p);
+ }
+ //USER Previous iteration may have failed as a result of ck/dqs or ck/dk violation,
+ //USER in which case the device may require special recovery.
+ if (DDRX || RLDRAMX) {
+ if (d != 0 || p != 0) {
+ recover_mem_device_after_ck_dqs_violation();
+ }
+ }
- pr_debug("calibrate_vfifo: g=%u p=%u d=%u\n",
- read_group, p, d);
+ DPRINT(1, "calibrate_vfifo: g=%lu p=%lu d=%lu", read_group, p, d);
+ BFM_GBL_SET(gwrite_pos[read_group].p, p);
+ BFM_GBL_SET(gwrite_pos[read_group].d, d);
- /* Load up the patterns used by read calibration
- using current DQDQS phase */
+ //USER Load up the patterns used by read calibration using current DQDQS phase
- rw_mgr_mem_calibrate_read_load_patterns_all_ranks ();
+ rw_mgr_mem_calibrate_read_load_patterns_all_ranks();
- if (!(gbl->phy_debug_mode_flags &
- PHY_DEBUG_DISABLE_GUARANTEED_READ)) {
- if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks
- (read_group, 1, &bit_chk)) {
- pr_debug("Guaranteed read test failed:"
- " g=%u p=%u d=%u\n",
- read_group, p, d);
+ if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)) {
+ if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks
+ (read_group, 1, &bit_chk)) {
+ DPRINT(1, "Guaranteed read test failed: g=%lu p=%lu d=%lu",
+ read_group, p, d);
break;
}
}
-/* case:56390 */
+// case:56390
grp_calibrated = 1;
-
- if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay(write_group, read_group, test_bgn)) {
- /* USER Read per-bit deskew can be done on a
- per shadow register basis */
- for (rank_bgn = 0;
- rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
- rank_bgn += NUM_RANKS_PER_SHADOW_REG) {
- /* Determine if this set of ranks
- should be skipped entirely */
- /* If doing read after write
- calibration, do not update FOM
- now - do it then */
- if (!rw_mgr_mem_calibrate_vfifo_center(rank_bgn, write_group, read_group, test_bgn, 1, 0)) {
- grp_calibrated = 0;
+ if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay
+ (write_group, read_group, test_bgn)) {
+ // USER Read per-bit deskew can be done on a per shadow register basis
+ for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
+ rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
+ //USER Determine if this set of ranks should be skipped entirely
+ if (!param->skip_shadow_regs[sr]) {
+
+ //USER Select shadow register set
+ select_shadow_regs_for_update(rank_bgn, read_group,
+ 1);
+
+ // If doing read after write calibration, do not update FOM now - do it then
+ if (!rw_mgr_mem_calibrate_vfifo_center
+ (rank_bgn, write_group, read_group, test_bgn, 1,
+ 0)) {
+ grp_calibrated = 0;
+ failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
+ }
}
}
} else {
grp_calibrated = 0;
+ failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
+ }
+ }
+ }
+
+ if (grp_calibrated == 0) {
+ set_failing_group_stage(write_group, CAL_STAGE_VFIFO, failed_substage);
+
+ return 0;
+ }
+ //USER Reset the delay chains back to zero if they have moved > 1 (check for > 1 because loop will increase d even when pass in first case)
+ if (DDRX || RLDRAMII) {
+ if (d > 2) {
+ scc_mgr_zero_group(write_group, write_test_bgn, 1);
+ }
+ }
+
+ return 1;
+}
+
+#else
+
+//USER VFIFO Calibration -- Full Calibration
+static uint32_t rw_mgr_mem_calibrate_vfifo(uint32_t g, uint32_t test_bgn)
+{
+ uint32_t p, rank_bgn, sr;
+ uint32_t grp_calibrated;
+ uint32_t failed_substage;
+
+ //USER update info for sims
+
+ reg_file_set_stage(CAL_STAGE_VFIFO);
+
+ reg_file_set_sub_stage(CAL_SUBSTAGE_GUARANTEED_READ);
+
+ failed_substage = CAL_SUBSTAGE_GUARANTEED_READ;
+
+ //USER update info for sims
+
+ reg_file_set_group(g);
+
+ grp_calibrated = 0;
+
+ for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && grp_calibrated == 0; p++) {
+ //USER set a particular dqdqs phase
+ if (DDRX) {
+ scc_mgr_set_dqdqs_output_phase_all_ranks(g, p);
+ }
+ //USER Load up the patterns used by read calibration using current DQDQS phase
+
+ rw_mgr_mem_calibrate_read_load_patterns_all_ranks();
+ if (!(gbl->phy_debug_mode_flags & PHY_DEBUG_DISABLE_GUARANTEED_READ)) {
+ if (!rw_mgr_mem_calibrate_read_test_patterns_all_ranks
+ (read_group, 1, &bit_chk)) {
+ break;
+ }
+ }
+
+ grp_calibrated = 1;
+ if (rw_mgr_mem_calibrate_vfifo_find_dqs_en_phase_sweep_dq_in_delay(g, g, test_bgn)) {
+ // USER Read per-bit deskew can be done on a per shadow register basis
+ for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
+ rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
+
+ //USER Determine if this set of ranks should be skipped entirely
+ if (!param->skip_shadow_regs[sr]) {
+
+ //USER Select shadow register set
+ select_shadow_regs_for_update(rank_bgn, read_group, 1);
+
+ if (!rw_mgr_mem_calibrate_vfifo_center
+ (rank_bgn, g, test_bgn, 1)) {
+ grp_calibrated = 0;
+ failed_substage = CAL_SUBSTAGE_VFIFO_CENTER;
+ }
+ }
}
+ } else {
+ grp_calibrated = 0;
+ failed_substage = CAL_SUBSTAGE_DQS_EN_PHASE;
}
}
- /* Reset the delay chains back to zero if they have moved > 1
- (check for > 1 because loop will increase d even when pass in
- first case) */
- if (d > 2)
- scc_mgr_zero_group(write_group, write_test_bgn, 1);
+ if (grp_calibrated == 0) {
+ set_failing_group_stage(g, CAL_STAGE_VFIFO, failed_substage);
+ return 0;
+ }
return 1;
}
-/* VFIFO Calibration -- Read Deskew Calibration after write deskew */
-static uint32_t rw_mgr_mem_calibrate_vfifo_end (uint32_t read_group, uint32_t test_bgn)
+#endif
+
+//USER VFIFO Calibration -- Read Deskew Calibration after write deskew
+static uint32_t rw_mgr_mem_calibrate_vfifo_end(uint32_t read_group, uint32_t test_bgn)
{
- uint32_t rank_bgn;
+ uint32_t rank_bgn, sr;
uint32_t grp_calibrated;
uint32_t write_group;
- /* update info for sims */
+ //USER update info for sims
reg_file_set_stage(CAL_STAGE_VFIFO_AFTER_WRITES);
reg_file_set_sub_stage(CAL_SUBSTAGE_VFIFO_CENTER);
- write_group = read_group;
+ if (DDRX) {
+ write_group = read_group;
+ } else {
+ write_group =
+ read_group / (RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
+ }
- /* update info for sims */
+ //USER update info for sims
reg_file_set_group(read_group);
grp_calibrated = 1;
+ // USER Read per-bit deskew can be done on a per shadow register basis
+ for (rank_bgn = 0, sr = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
+ rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
- /* Read per-bit deskew can be done on a per shadow register basis */
- for (rank_bgn = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
- rank_bgn += NUM_RANKS_PER_SHADOW_REG) {
+ //USER Determine if this set of ranks should be skipped entirely
+ if (!param->skip_shadow_regs[sr]) {
- /* This is the last calibration round, update FOM here */
- if (!rw_mgr_mem_calibrate_vfifo_center (rank_bgn,
- write_group, read_group, test_bgn, 0, 1))
+ //USER Select shadow register set
+ select_shadow_regs_for_update(rank_bgn, read_group, 1);
+
+ // This is the last calibration round, update FOM here
+ if (!rw_mgr_mem_calibrate_vfifo_center
+ (rank_bgn, write_group, read_group, test_bgn, 0, 1)) {
grp_calibrated = 0;
+ }
+ }
}
- if (grp_calibrated == 0)
+ if (grp_calibrated == 0) {
+ set_failing_group_stage(write_group, CAL_STAGE_VFIFO_AFTER_WRITES,
+ CAL_SUBSTAGE_VFIFO_CENTER);
return 0;
+ }
return 1;
}
+//USER Calibrate LFIFO to find smallest read latency
-/* Calibrate LFIFO to find smallest read latency */
-
-static uint32_t rw_mgr_mem_calibrate_lfifo (void)
+static uint32_t rw_mgr_mem_calibrate_lfifo(void)
{
uint32_t found_one;
t_btfld bit_chk;
+ uint32_t g;
- /* update info for sims */
+ //USER update info for sims
reg_file_set_stage(CAL_STAGE_LFIFO);
reg_file_set_sub_stage(CAL_SUBSTAGE_READ_LATENCY);
- /* Load up the patterns used by read calibration for all ranks */
+ //USER Load up the patterns used by read calibration for all ranks
- rw_mgr_mem_calibrate_read_load_patterns_all_ranks ();
+ rw_mgr_mem_calibrate_read_load_patterns_all_ranks();
found_one = 0;
do {
IOWR_32DIRECT(PHY_MGR_PHY_RLAT, 0, gbl->curr_read_lat);
- pr_debug("lfifo: read_lat=%u\n", gbl->curr_read_lat);
+ DPRINT(2, "lfifo: read_lat=%lu", gbl->curr_read_lat);
- if (!rw_mgr_mem_calibrate_read_test_all_ranks (0,
- NUM_READ_TESTS, PASS_ALL_BITS, &bit_chk, 1)) {
+ if (!rw_mgr_mem_calibrate_read_test_all_ranks
+ (0, NUM_READ_TESTS, PASS_ALL_BITS, &bit_chk, 1)) {
break;
}
found_one = 1;
- /* reduce read latency and see if things are working */
- /* correctly */
+ //USER reduce read latency and see if things are working
+ //USER correctly
gbl->curr_read_lat--;
} while (gbl->curr_read_lat > 0);
- /* reset the fifos to get pointers to known state */
+ //USER reset the fifos to get pointers to known state
IOWR_32DIRECT(PHY_MGR_CMD_FIFO_RESET, 0, 0);
if (found_one) {
- /* add a fudge factor to the read latency that was determined */
+ //USER add a fudge factor to the read latency that was determined
gbl->curr_read_lat += 2;
IOWR_32DIRECT(PHY_MGR_PHY_RLAT, 0, gbl->curr_read_lat);
- pr_debug("lfifo: success: using read_lat=%u\n",
- gbl->curr_read_lat);
+
+ DPRINT(2, "lfifo: success: using read_lat=%lu", gbl->curr_read_lat);
return 1;
} else {
- pr_debug("lfifo: failed at initial read_lat=%u\n",
- gbl->curr_read_lat);
+ set_failing_group_stage(0xff, CAL_STAGE_LFIFO, CAL_SUBSTAGE_READ_LATENCY);
+
+ DPRINT(2, "lfifo: failed at initial read_lat=%lu", gbl->curr_read_lat);
return 0;
}
}
-/*
- * issue write test command.
- * two variants are provided. one that just tests a write pattern and
- * another that tests datamask functionality.
- */
+//USER issue write test command.
+//USER two variants are provided. one that just tests a write pattern and another that
+//USER tests datamask functionality.
-static void rw_mgr_mem_calibrate_write_test_issue (uint32_t group, uint32_t test_dm)
+static void rw_mgr_mem_calibrate_write_test_issue(uint32_t group, uint32_t test_dm)
{
uint32_t mcc_instruction;
uint32_t quick_write_mode = (((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES)
- && ENABLE_SUPER_QUICK_CALIBRATION) || BFM_MODE;
+ && ENABLE_SUPER_QUICK_CALIBRATION) || BFM_MODE;
uint32_t rw_wl_nop_cycles;
- /*
- * Set counter and jump addresses for the right
- * number of NOP cycles.
- * The number of supported NOP cycles can range from -1 to infinity
- * Three different cases are handled:
- *
- * 1. For a number of NOP cycles greater than 0, the RW Mgr looping
- * mechanism will be used to insert the right number of NOPs
- *
- * 2. For a number of NOP cycles equals to 0, the micro-instruction
- * issuing the write command will jump straight to the
- * micro-instruction that turns on DQS (for DDRx), or outputs write
- * data (for RLD), skipping
- * the NOP micro-instruction all together
- *
- * 3. A number of NOP cycles equal to -1 indicates that DQS must be
- * turned on in the same micro-instruction that issues the write
- * command. Then we need
- * to directly jump to the micro-instruction that sends out the data
- *
- * NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters
- * (2 and 3). One jump-counter (0) is used to perform multiple
- * write-read operations.
- * one counter left to issue this command in "multiple-group" mode
- */
-
-#if MULTIPLE_AFI_WLAT
- rw_wl_nop_cycles = gbl->rw_wl_nop_cycles_per_group[group];
-#else
+ //USER Set counter and jump addresses for the right
+ //USER number of NOP cycles.
+ //USER The number of supported NOP cycles can range from -1 to infinity
+ //USER Three different cases are handled:
+ //USER
+ //USER 1. For a number of NOP cycles greater than 0, the RW Mgr looping
+ //USER mechanism will be used to insert the right number of NOPs
+ //USER
+ //USER 2. For a number of NOP cycles equals to 0, the micro-instruction
+ //USER issuing the write command will jump straight to the micro-instruction
+ //USER that turns on DQS (for DDRx), or outputs write data (for RLD), skipping
+ //USER the NOP micro-instruction all together
+ //USER
+ //USER 3. A number of NOP cycles equal to -1 indicates that DQS must be turned
+ //USER on in the same micro-instruction that issues the write command. Then we need
+ //USER to directly jump to the micro-instruction that sends out the data
+ //USER
+ //USER NOTE: Implementing this mechanism uses 2 RW Mgr jump-counters (2 and 3). One
+ //USER jump-counter (0) is used to perform multiple write-read operations.
+ //USER one counter left to issue this command in "multiple-group" mode.
+
rw_wl_nop_cycles = gbl->rw_wl_nop_cycles;
-#endif
if (rw_wl_nop_cycles == -1) {
- /* CNTR 2 - We want to execute the special write operation that
- turns on DQS right away and then skip directly to the
- instruction that sends out the data. We set the counter to a
- large number so that the jump is always taken */
+ //USER CNTR 2 - We want to execute the special write operation that
+ //USER turns on DQS right away and then skip directly to the instruction that
+ //USER sends out the data. We set the counter to a large number so that the
+ //USER jump is always taken
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0, 0xFF);
- /* CNTR 3 - Not used */
+ //USER CNTR 3 - Not used
if (test_dm) {
mcc_instruction = __RW_MGR_LFSR_WR_RD_DM_BANK_0_WL_1;
IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0,
- __RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA);
- IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_3, 0,
- __RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP);
+ __RW_MGR_LFSR_WR_RD_DM_BANK_0_DATA);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_3, 0, __RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP);
} else {
mcc_instruction = __RW_MGR_LFSR_WR_RD_BANK_0_WL_1;
- IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0,
- __RW_MGR_LFSR_WR_RD_BANK_0_DATA);
- IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_3, 0,
- __RW_MGR_LFSR_WR_RD_BANK_0_NOP);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_LFSR_WR_RD_BANK_0_DATA);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_3, 0, __RW_MGR_LFSR_WR_RD_BANK_0_NOP);
}
+
} else if (rw_wl_nop_cycles == 0) {
- /* CNTR 2 - We want to skip the NOP operation and go straight to
- the DQS enable instruction. We set the counter to a large number
- so that the jump is always taken */
+ //USER CNTR 2 - We want to skip the NOP operation and go straight to
+ //USER the DQS enable instruction. We set the counter to a large number so that the
+ //USER jump is always taken
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0, 0xFF);
- /* CNTR 3 - Not used */
+ //USER CNTR 3 - Not used
if (test_dm) {
mcc_instruction = __RW_MGR_LFSR_WR_RD_DM_BANK_0;
- IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0,
- __RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_LFSR_WR_RD_DM_BANK_0_DQS);
} else {
mcc_instruction = __RW_MGR_LFSR_WR_RD_BANK_0;
- IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0,
- __RW_MGR_LFSR_WR_RD_BANK_0_DQS);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0, __RW_MGR_LFSR_WR_RD_BANK_0_DQS);
}
+
} else {
- /* CNTR 2 - In this case we want to execute the next instruction
- and NOT take the jump. So we set the counter to 0. The jump
- address doesn't count */
+ //USER CNTR 2 - In this case we want to execute the next instruction and NOT
+ //USER take the jump. So we set the counter to 0. The jump address doesn't count
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_2, 0, 0x0);
IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_2, 0, 0x0);
- /* CNTR 3 - Set the nop counter to the number of cycles we
- need to loop for, minus 1 */
+ //USER CNTR 3 - Set the nop counter to the number of cycles we need to loop for, minus 1
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_3, 0, rw_wl_nop_cycles - 1);
if (test_dm) {
mcc_instruction = __RW_MGR_LFSR_WR_RD_DM_BANK_0;
- IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_3, 0,
- __RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_3, 0, __RW_MGR_LFSR_WR_RD_DM_BANK_0_NOP);
} else {
mcc_instruction = __RW_MGR_LFSR_WR_RD_BANK_0;
- IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_3, 0,
- __RW_MGR_LFSR_WR_RD_BANK_0_NOP);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_3, 0, __RW_MGR_LFSR_WR_RD_BANK_0_NOP);
}
}
@@ -3054,172 +3440,177 @@ static void rw_mgr_mem_calibrate_write_test_issue (uint32_t group, uint32_t test
}
IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, mcc_instruction);
- /* CNTR 1 - This is used to ensure enough time elapses
- for read data to come back. */
+ //USER CNTR 1 - This is used to ensure enough time elapses for read data to come back.
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, 0x30);
if (test_dm) {
- IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0,
- __RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_LFSR_WR_RD_DM_BANK_0_WAIT);
} else {
- IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0,
- __RW_MGR_LFSR_WR_RD_BANK_0_WAIT);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_LFSR_WR_RD_BANK_0_WAIT);
}
IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, (group << 2), mcc_instruction);
}
-/* Test writes, can check for a single bit pass or multiple bit pass */
+//USER Test writes, can check for a single bit pass or multiple bit pass
-static uint32_t rw_mgr_mem_calibrate_write_test (uint32_t rank_bgn,
- uint32_t write_group, uint32_t use_dm, uint32_t all_correct,
- t_btfld *bit_chk, uint32_t all_ranks)
+static uint32_t rw_mgr_mem_calibrate_write_test(uint32_t rank_bgn, uint32_t write_group,
+ uint32_t use_dm, uint32_t all_correct,
+ t_btfld * bit_chk, uint32_t all_ranks)
{
uint32_t r;
t_btfld correct_mask_vg;
t_btfld tmp_bit_chk;
uint32_t vg;
- uint32_t rank_end = all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS :
- (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
+ uint32_t rank_end =
+ all_ranks ? RW_MGR_MEM_NUMBER_OF_RANKS : (rank_bgn + NUM_RANKS_PER_SHADOW_REG);
*bit_chk = param->write_correct_mask;
correct_mask_vg = param->write_correct_mask_vg;
for (r = rank_bgn; r < rank_end; r++) {
- /* set rank */
+ if (param->skip_ranks[r]) {
+ //USER request to skip the rank
+
+ continue;
+ }
+ //USER set rank
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_READ_WRITE);
tmp_bit_chk = 0;
- for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS - 1; ; vg--) {
+ for (vg = RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS - 1;; vg--) {
- /* reset the fifos to get pointers to known state */
+ //USER reset the fifos to get pointers to known state
IOWR_32DIRECT(PHY_MGR_CMD_FIFO_RESET, 0, 0);
- tmp_bit_chk = tmp_bit_chk <<
- (RW_MGR_MEM_DQ_PER_WRITE_DQS /
- RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
- rw_mgr_mem_calibrate_write_test_issue (write_group *
- RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS + vg,
- use_dm);
-
- tmp_bit_chk = tmp_bit_chk | (correct_mask_vg &
- ~(IORD_32DIRECT(BASE_RW_MGR, 0)));
- pr_debug("write_test(%u,%u,%u) :[%u,%u] "
- BTFLD_FMT " & ~%x => " BTFLD_FMT " => "
- BTFLD_FMT, write_group, use_dm, all_correct,
- r, vg, correct_mask_vg,
- IORD_32DIRECT(BASE_RW_MGR, 0), correct_mask_vg
- & ~IORD_32DIRECT(BASE_RW_MGR, 0),
- tmp_bit_chk);
-
- if (vg == 0)
+ tmp_bit_chk =
+ tmp_bit_chk << (RW_MGR_MEM_DQ_PER_WRITE_DQS /
+ RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS);
+ rw_mgr_mem_calibrate_write_test_issue(write_group *
+ RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS
+ + vg, use_dm);
+
+ tmp_bit_chk =
+ tmp_bit_chk | (correct_mask_vg & ~(IORD_32DIRECT(BASE_RW_MGR, 0)));
+ DPRINT(2,
+ "write_test(%lu,%lu,%lu) :[%lu,%lu] " BTFLD_FMT " & ~%x => "
+ BTFLD_FMT " => " BTFLD_FMT, write_group, use_dm, all_correct, r, vg,
+ correct_mask_vg, IORD_32DIRECT(BASE_RW_MGR, 0),
+ correct_mask_vg & ~IORD_32DIRECT(BASE_RW_MGR, 0), tmp_bit_chk);
+
+ if (vg == 0) {
break;
+ }
}
*bit_chk &= tmp_bit_chk;
}
- set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
-
- if (all_correct)
+ if (all_correct) {
+ set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
+ DPRINT(2, "write_test(%lu,%lu,ALL) : " BTFLD_FMT " == " BTFLD_FMT " => %lu",
+ write_group, use_dm, *bit_chk, param->write_correct_mask,
+ (long unsigned int)(*bit_chk == param->write_correct_mask));
return (*bit_chk == param->write_correct_mask);
- else
+ } else {
+ set_rank_and_odt_mask(0, RW_MGR_ODT_MODE_OFF);
+ DPRINT(2, "write_test(%lu,%lu,ONE) : " BTFLD_FMT " != " BTFLD_FMT " => %lu",
+ write_group, use_dm, *bit_chk, (long unsigned int)0,
+ (long unsigned int)(*bit_chk != 0));
return (*bit_chk != 0x00);
+ }
}
-static uint32_t rw_mgr_mem_calibrate_write_test_all_ranks
-(uint32_t write_group, uint32_t use_dm, uint32_t all_correct, t_btfld *bit_chk)
+static inline uint32_t rw_mgr_mem_calibrate_write_test_all_ranks(uint32_t write_group,
+ uint32_t use_dm,
+ uint32_t all_correct,
+ t_btfld * bit_chk)
{
- return rw_mgr_mem_calibrate_write_test (0, write_group,
- use_dm, all_correct, bit_chk, 1);
+ return rw_mgr_mem_calibrate_write_test(0, write_group, use_dm, all_correct, bit_chk, 1);
}
-/* level the write operations */
-/* Write Levelling -- Full Calibration */
-static uint32_t rw_mgr_mem_calibrate_wlevel (uint32_t g, uint32_t test_bgn)
+//USER level the write operations
+
+#if NEWVERSION_WL
+
+//USER Write Levelling -- Full Calibration
+static uint32_t rw_mgr_mem_calibrate_wlevel(uint32_t g, uint32_t test_bgn)
{
- uint32_t p, d;
+ uint32_t p, d, sr;
+
uint32_t num_additional_fr_cycles = 0;
+
t_btfld bit_chk;
uint32_t work_bgn, work_end, work_mid;
uint32_t tmp_delay;
uint32_t found_begin;
uint32_t dtaps_per_ptap;
- /* update info for sims */
+ //USER update info for sims
reg_file_set_stage(CAL_STAGE_WLEVEL);
reg_file_set_sub_stage(CAL_SUBSTAGE_WORKING_DELAY);
- /* maximum phases for the sweep */
+ //USER maximum phases for the sweep
-#if USE_DQS_TRACKING
dtaps_per_ptap = IORD_32DIRECT(REG_FILE_DTAPS_PER_PTAP, 0);
-#else
- dtaps_per_ptap = 0;
- tmp_delay = 0;
- while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
- dtaps_per_ptap++;
- tmp_delay += IO_DELAY_PER_DCHAIN_TAP;
- }
- dtaps_per_ptap--;
-#endif
- /* starting phases */
+ //USER starting phases
- /* update info for sims */
+ //USER update info for sims
reg_file_set_group(g);
- /* starting and end range where writes work */
+ //USER starting and end range where writes work
- scc_mgr_spread_out2_delay_all_ranks (g, test_bgn);
+ scc_mgr_spread_out2_delay_all_ranks(g, test_bgn);
work_bgn = 0;
work_end = 0;
- /* step 1: find first working phase, increment in ptaps, and then in
- dtaps if ptaps doesn't find a working phase */
+ //USER step 1: find first working phase, increment in ptaps, and then in dtaps if ptaps doesn't find a working phase
found_begin = 0;
tmp_delay = 0;
- for (d = 0; d <= dtaps_per_ptap; d++, tmp_delay +=
- IO_DELAY_PER_DCHAIN_TAP) {
- scc_mgr_apply_group_all_out_delay_all_ranks (g, test_bgn, d);
+ for (d = 0; d <= dtaps_per_ptap; d++, tmp_delay += IO_DELAY_PER_DCHAIN_TAP) {
+ scc_mgr_apply_group_all_out_delay_all_ranks(g, test_bgn, d);
work_bgn = tmp_delay;
- for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX +
- num_additional_fr_cycles*IO_DLL_CHAIN_LENGTH;
- p++, work_bgn += IO_DELAY_PER_OPA_TAP) {
- pr_debug("wlevel: begin-1: p=%u d=%u\n", p, d);
+ for (p = 0;
+ p <= IO_DQDQS_OUT_PHASE_MAX + num_additional_fr_cycles * IO_DLL_CHAIN_LENGTH;
+ p++, work_bgn += IO_DELAY_PER_OPA_TAP) {
+ DPRINT(2, "wlevel: begin-1: p=%lu d=%lu", p, d);
scc_mgr_set_dqdqs_output_phase_all_ranks(g, p);
- if (rw_mgr_mem_calibrate_write_test_all_ranks (g, 0,
- PASS_ONE_BIT, &bit_chk)) {
+ if (rw_mgr_mem_calibrate_write_test_all_ranks(g, 0, PASS_ONE_BIT, &bit_chk)) {
found_begin = 1;
break;
}
}
- if (found_begin)
+ if (found_begin) {
break;
+ }
}
- if (p > IO_DQDQS_OUT_PHASE_MAX + num_additional_fr_cycles * IO_DLL_CHAIN_LENGTH)
- /* fail, cannot find first working phase */
+ if (p > IO_DQDQS_OUT_PHASE_MAX + num_additional_fr_cycles * IO_DLL_CHAIN_LENGTH) {
+ //USER fail, cannot find first working phase
+
+ set_failing_group_stage(g, CAL_STAGE_WLEVEL, CAL_SUBSTAGE_WORKING_DELAY);
+
return 0;
+ }
- pr_debug("wlevel: first valid p=%u d=%u\n", p, d);
+ DPRINT(2, "wlevel: first valid p=%lu d=%lu", p, d);
reg_file_set_sub_stage(CAL_SUBSTAGE_LAST_WORKING_DELAY);
- /* If d is 0 then the working window covers a phase tap and we can
- follow the old procedure otherwise, we've found the beginning, and we
- need to increment the dtaps until we find the end */
+ //USER If d is 0 then the working window covers a phase tap and we can follow the old procedure
+ //USER otherwise, we've found the beginning, and we need to increment the dtaps until we find the end
if (d == 0) {
+ COV(WLEVEL_PHASE_PTAP_OVERLAP);
work_end = work_bgn + IO_DELAY_PER_OPA_TAP;
- /* step 2: if we have room, back off by one and increment
- in dtaps */
+ //USER step 2: if we have room, back off by one and increment in dtaps
if (p > 0) {
int found = 0;
@@ -3227,46 +3618,63 @@ static uint32_t rw_mgr_mem_calibrate_wlevel (uint32_t g, uint32_t test_bgn)
tmp_delay = work_bgn - IO_DELAY_PER_OPA_TAP;
- for (d = 0; d <= IO_IO_OUT1_DELAY_MAX &&
- tmp_delay < work_bgn; d++,
- tmp_delay += IO_DELAY_PER_DCHAIN_TAP) {
- pr_debug("wlevel: begin-2: p=%u d=%u\n",
- (p - 1), d);
+ for (d = 0; d <= IO_IO_OUT1_DELAY_MAX && tmp_delay < work_bgn;
+ d++, tmp_delay += IO_DELAY_PER_DCHAIN_TAP) {
+ DPRINT(2, "wlevel: begin-2: p=%lu d=%lu", (p - 1), d);
scc_mgr_apply_group_all_out_delay_all_ranks(g, test_bgn, d);
- if (rw_mgr_mem_calibrate_write_test_all_ranks(g, 0, PASS_ONE_BIT, &bit_chk)) {
+ if (rw_mgr_mem_calibrate_write_test_all_ranks
+ (g, 0, PASS_ONE_BIT, &bit_chk)) {
found = 1;
work_bgn = tmp_delay;
break;
}
}
- scc_mgr_apply_group_all_out_delay_all_ranks (g,
- test_bgn, 0);
+ {
+ uint32_t d2;
+ uint32_t p2;
+ if (found) {
+ d2 = d;
+ p2 = p - 1;
+ } else {
+ d2 = 0;
+ p2 = p;
+ }
+
+ DPRINT(2, "wlevel: found begin-A: p=%lu d=%lu ps=%lu", p2, d2,
+ work_bgn);
+
+ BFM_GBL_SET(dqs_wlevel_left_edge[g].p, p2);
+ BFM_GBL_SET(dqs_wlevel_left_edge[g].d, d2);
+ BFM_GBL_SET(dqs_wlevel_left_edge[g].ps, work_bgn);
+ }
+
+ scc_mgr_apply_group_all_out_delay_all_ranks(g, test_bgn, 0);
} else {
- pr_debug("wlevel: found begin-B: p=%u d=%u ps=%u\n",
- p, d, work_bgn);
+ DPRINT(2, "wlevel: found begin-B: p=%lu d=%lu ps=%lu", p, d, work_bgn);
+
+ BFM_GBL_SET(dqs_wlevel_left_edge[g].p, p);
+ BFM_GBL_SET(dqs_wlevel_left_edge[g].d, d);
+ BFM_GBL_SET(dqs_wlevel_left_edge[g].ps, work_bgn);
}
- /* step 3: go forward from working phase to non working phase,
- increment in ptaps */
+ //USER step 3: go forward from working phase to non working phase, increment in ptaps
- for (p = p + 1; p <= IO_DQDQS_OUT_PHASE_MAX +
- num_additional_fr_cycles * IO_DLL_CHAIN_LENGTH; p++,
- work_end += IO_DELAY_PER_OPA_TAP) {
- pr_debug("wlevel: end-0: p=%u d=%u\n", p,
- 0);
+ for (p = p + 1;
+ p <= IO_DQDQS_OUT_PHASE_MAX + num_additional_fr_cycles * IO_DLL_CHAIN_LENGTH;
+ p++, work_end += IO_DELAY_PER_OPA_TAP) {
+ DPRINT(2, "wlevel: end-0: p=%lu d=%lu", p, (long unsigned int)0);
scc_mgr_set_dqdqs_output_phase_all_ranks(g, p);
- if (!rw_mgr_mem_calibrate_write_test_all_ranks (g, 0,
- PASS_ONE_BIT, &bit_chk)) {
+ if (!rw_mgr_mem_calibrate_write_test_all_ranks
+ (g, 0, PASS_ONE_BIT, &bit_chk)) {
break;
}
}
- /* step 4: back off one from last, increment in dtaps */
- /* The actual increment is done outside the if/else statement
- since it is shared with other code */
+ //USER step 4: back off one from last, increment in dtaps
+ //USER The actual increment is done outside the if/else statement since it is shared with other code
p = p - 1;
@@ -3276,52 +3684,56 @@ static uint32_t rw_mgr_mem_calibrate_wlevel (uint32_t g, uint32_t test_bgn)
d = 0;
} else {
- /* step 5: Window doesn't cover phase tap, just increment
- dtaps until failure */
- /* The actual increment is done outside the if/else statement
- since it is shared with other code */
+ //USER step 5: Window doesn't cover phase tap, just increment dtaps until failure
+ //USER The actual increment is done outside the if/else statement since it is shared with other code
+ COV(WLEVEL_PHASE_PTAP_NO_OVERLAP);
work_end = work_bgn;
- pr_debug("wlevel: found begin-C: p=%u d=%u ps=%u\n", p,
- d, work_bgn);
+ DPRINT(2, "wlevel: found begin-C: p=%lu d=%lu ps=%lu", p, d, work_bgn);
+ BFM_GBL_SET(dqs_wlevel_left_edge[g].p, p);
+ BFM_GBL_SET(dqs_wlevel_left_edge[g].d, d);
+ BFM_GBL_SET(dqs_wlevel_left_edge[g].ps, work_bgn);
+
}
- /* The actual increment until failure */
- for (; d <= IO_IO_OUT1_DELAY_MAX; d++, work_end +=
- IO_DELAY_PER_DCHAIN_TAP) {
- pr_debug("wlevel: end: p=%u d=%u\n", p, d);
- scc_mgr_apply_group_all_out_delay_all_ranks (g, test_bgn, d);
+ //USER The actual increment until failure
+ for (; d <= IO_IO_OUT1_DELAY_MAX; d++, work_end += IO_DELAY_PER_DCHAIN_TAP) {
+ DPRINT(2, "wlevel: end: p=%lu d=%lu", p, d);
+ scc_mgr_apply_group_all_out_delay_all_ranks(g, test_bgn, d);
- if (!rw_mgr_mem_calibrate_write_test_all_ranks (g, 0,
- PASS_ONE_BIT, &bit_chk)) {
+ if (!rw_mgr_mem_calibrate_write_test_all_ranks(g, 0, PASS_ONE_BIT, &bit_chk)) {
break;
}
}
- scc_mgr_zero_group (g, test_bgn, 1);
+ scc_mgr_zero_group(g, test_bgn, 1);
work_end -= IO_DELAY_PER_DCHAIN_TAP;
if (work_end >= work_bgn) {
- /* we have a working range */
+ //USER we have a working range
} else {
- /* nil range */
+ //USER nil range
+
+ set_failing_group_stage(g, CAL_STAGE_WLEVEL, CAL_SUBSTAGE_LAST_WORKING_DELAY);
+
return 0;
}
- pr_debug("wlevel: found end: p=%u d=%u; range: [%u,%u]\n", p,
- d-1, work_bgn, work_end);
+ DPRINT(2, "wlevel: found end: p=%lu d=%lu; range: [%lu,%lu]", p, d - 1, work_bgn, work_end);
+ BFM_GBL_SET(dqs_wlevel_right_edge[g].p, p);
+ BFM_GBL_SET(dqs_wlevel_right_edge[g].d, d - 1);
+ BFM_GBL_SET(dqs_wlevel_right_edge[g].ps, work_end);
- /* center */
+ //USER center
work_mid = (work_bgn + work_end) / 2;
- pr_debug("wlevel: work_mid=%d\n", work_mid);
+ DPRINT(2, "wlevel: work_mid=%ld", work_mid);
tmp_delay = 0;
- for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX +
- num_additional_fr_cycles * IO_DLL_CHAIN_LENGTH &&
- tmp_delay < work_mid; p++, tmp_delay += IO_DELAY_PER_OPA_TAP)
- ;
+ for (p = 0;
+ p <= IO_DQDQS_OUT_PHASE_MAX + num_additional_fr_cycles * IO_DLL_CHAIN_LENGTH
+ && tmp_delay < work_mid; p++, tmp_delay += IO_DELAY_PER_OPA_TAP) ;
if (tmp_delay > work_mid) {
tmp_delay -= IO_DELAY_PER_OPA_TAP;
@@ -3335,38 +3747,167 @@ static uint32_t rw_mgr_mem_calibrate_wlevel (uint32_t g, uint32_t test_bgn)
scc_mgr_set_dqdqs_output_phase_all_ranks(g, p);
- pr_debug("wlevel: p=%u tmp_delay=%u left=%u\n", p, tmp_delay,
- work_mid - tmp_delay);
+ DPRINT(2, "wlevel: p=%lu tmp_delay=%lu left=%lu", p, tmp_delay, work_mid - tmp_delay);
- for (d = 0; d <= IO_IO_OUT1_DELAY_MAX && tmp_delay < work_mid; d++,
- tmp_delay += IO_DELAY_PER_DCHAIN_TAP)
- ;
+ for (d = 0; d <= IO_IO_OUT1_DELAY_MAX && tmp_delay < work_mid;
+ d++, tmp_delay += IO_DELAY_PER_DCHAIN_TAP) ;
if (tmp_delay > work_mid) {
tmp_delay -= IO_DELAY_PER_DCHAIN_TAP;
d--;
}
- pr_debug("wlevel: p=%u d=%u tmp_delay=%u left=%u\n", p, d,
- tmp_delay, work_mid - tmp_delay);
+ DPRINT(2, "wlevel: p=%lu d=%lu tmp_delay=%lu left=%lu", p, d, tmp_delay,
+ work_mid - tmp_delay);
+
+ scc_mgr_apply_group_all_out_delay_add_all_ranks(g, test_bgn, d);
+
+ DPRINT(2, "wlevel: found middle: p=%lu d=%lu", p, d);
+ BFM_GBL_SET(dqs_wlevel_mid[g].p, p);
+ BFM_GBL_SET(dqs_wlevel_mid[g].d, d);
+ BFM_GBL_SET(dqs_wlevel_mid[g].ps, work_mid);
+
+ return 1;
+}
+
+#else
+
+//USER Write Levelling -- Full Calibration
+static uint32_t rw_mgr_mem_calibrate_wlevel(uint32_t g, uint32_t test_bgn)
+{
+ uint32_t p, d;
+ t_btfld bit_chk;
+ uint32_t work_bgn, work_end, work_mid;
+ uint32_t tmp_delay;
+
+ //USER update info for sims
+
+ reg_file_set_stage(CAL_STAGE_WLEVEL);
+ reg_file_set_sub_stage(CAL_SUBSTAGE_WORKING_DELAY);
+
+ //USER maximum phases for the sweep
+
+ //USER starting phases
+
+ //USER update info for sims
+
+ reg_file_set_group(g);
+
+ //USER starting and end range where writes work
+
+ work_bgn = 0;
+ work_end = 0;
+
+ //USER step 1: find first working phase, increment in ptaps
+
+ for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX; p++, work_bgn += IO_DELAY_PER_OPA_TAP) {
+ scc_mgr_set_dqdqs_output_phase_all_ranks(g, p);
+
+ if (rw_mgr_mem_calibrate_write_test_all_ranks(g, 0, PASS_ONE_BIT, &bit_chk)) {
+ break;
+ }
+ }
+
+ if (p > IO_DQDQS_OUT_PHASE_MAX) {
+ //USER fail, cannot find first working phase
+
+ set_failing_group_stage(g, CAL_STAGE_WLEVEL, CAL_SUBSTAGE_WORKING_DELAY);
+
+ return 0;
+ }
+
+ work_end = work_bgn + IO_DELAY_PER_OPA_TAP;
+
+ reg_file_set_sub_stage(CAL_SUBSTAGE_LAST_WORKING_DELAY);
+
+ //USER step 2: if we have room, back off by one and increment in dtaps
+
+ if (p > 0) {
+ scc_mgr_set_dqdqs_output_phase_all_ranks(g, p - 1);
+
+ tmp_delay = work_bgn - IO_DELAY_PER_OPA_TAP;
+
+ for (d = 0; d <= IO_IO_OUT1_DELAY_MAX && tmp_delay < work_bgn;
+ d++, tmp_delay += IO_DELAY_PER_DCHAIN_TAP) {
+ scc_mgr_apply_group_all_out_delay_all_ranks(g, test_bgn, d);
+
+ if (rw_mgr_mem_calibrate_write_test_all_ranks(g, 0, PASS_ONE_BIT, &bit_chk)) {
+ work_bgn = tmp_delay;
+ break;
+ }
+ }
+
+ scc_mgr_apply_group_all_out_delay_all_ranks(g, test_bgn, 0);
+ }
+ //USER step 3: go forward from working phase to non working phase, increment in ptaps
+
+ for (p = p + 1; p <= IO_DQDQS_OUT_PHASE_MAX; p++, work_end += IO_DELAY_PER_OPA_TAP) {
+ scc_mgr_set_dqdqs_output_phase_all_ranks(g, p);
+
+ if (!rw_mgr_mem_calibrate_write_test_all_ranks(g, 0, PASS_ONE_BIT, &bit_chk)) {
+ break;
+ }
+ }
+
+ //USER step 4: back off one from last, increment in dtaps
+
+ scc_mgr_set_dqdqs_output_phase_all_ranks(g, p - 1);
+
+ work_end -= IO_DELAY_PER_OPA_TAP;
+
+ for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++, work_end += IO_DELAY_PER_DCHAIN_TAP) {
+ scc_mgr_apply_group_all_out_delay_all_ranks(g, test_bgn, d);
+
+ if (!rw_mgr_mem_calibrate_write_test_all_ranks(g, 0, PASS_ONE_BIT, &bit_chk)) {
+ break;
+ }
+ }
+
+ scc_mgr_apply_group_all_out_delay_all_ranks(g, test_bgn, 0);
+
+ if (work_end > work_bgn) {
+ //USER we have a working range
+ } else {
+ //USER nil range
+
+ set_failing_group_stage(g, CAL_STAGE_WLEVEL, CAL_SUBSTAGE_LAST_WORKING_DELAY);
+
+ return 0;
+ }
+
+ //USER center
+
+ work_mid = (work_bgn + work_end) / 2;
+
+ tmp_delay = 0;
+
+ for (p = 0; p <= IO_DQDQS_OUT_PHASE_MAX && tmp_delay < work_mid;
+ p++, tmp_delay += IO_DELAY_PER_OPA_TAP) ;
+
+ tmp_delay -= IO_DELAY_PER_OPA_TAP;
+
+ scc_mgr_set_dqdqs_output_phase_all_ranks(g, p - 1);
- scc_mgr_apply_group_all_out_delay_add_all_ranks (g, test_bgn, d);
+ for (d = 0; d <= IO_IO_OUT1_DELAY_MAX && tmp_delay < work_mid;
+ d++, tmp_delay += IO_DELAY_PER_DCHAIN_TAP) ;
- pr_debug("wlevel: found middle: p=%u d=%u\n", p, d);
+ scc_mgr_apply_group_all_out_delay_add_all_ranks(g, test_bgn, d - 1);
return 1;
}
-/* center all windows. do per-bit-deskew to possibly increase size of
-certain windows */
+#endif
+
+//USER center all windows. do per-bit-deskew to possibly increase size of certain windows
-static uint32_t rw_mgr_mem_calibrate_writes_center (uint32_t rank_bgn,
- uint32_t write_group, uint32_t test_bgn)
+#if NEWVERSION_WRDESKEW
+
+static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn, uint32_t write_group,
+ uint32_t test_bgn)
{
uint32_t i, p, min_index;
int32_t d;
- /* Store these as signed since there are comparisons with
- signed numbers */
+ //USER Store these as signed since there are comparisons with signed numbers
t_btfld bit_chk;
t_btfld sticky_bit_chk;
int32_t left_edge[RW_MGR_MEM_DQ_PER_WRITE_DQS];
@@ -3376,132 +3917,114 @@ static uint32_t rw_mgr_mem_calibrate_writes_center (uint32_t rank_bgn,
int32_t new_dqs, start_dqs, shift_dq;
int32_t dq_margin, dqs_margin, dm_margin;
uint32_t stop;
- int32_t bgn_curr;
- int32_t end_curr;
- int32_t bgn_best;
- int32_t end_best;
- int32_t win_best;
-
- ALTERA_ASSERT(write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH);
dm_margin = 0;
start_dqs = READ_SCC_DQS_IO_OUT1_DELAY();
- /* per-bit deskew */
+ select_curr_shadow_reg_using_rank(rank_bgn);
- /* set the left and right edge of each bit to an illegal value */
- /* use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value */
+ //USER per-bit deskew
+
+ //USER set the left and right edge of each bit to an illegal value
+ //USER use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value
sticky_bit_chk = 0;
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
- left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
+ left_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
}
- /* Search for the left edge of the window for each bit */
+ //USER Search for the left edge of the window for each bit
for (d = 0; d <= IO_IO_OUT1_DELAY_MAX; d++) {
- scc_mgr_apply_group_dq_out1_delay (write_group, test_bgn, d);
+ scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, d);
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
- /* Stop searching when the read test doesn't pass AND when
- we've seen a passing read on every bit */
- stop = !rw_mgr_mem_calibrate_write_test (rank_bgn, write_group,
- 0, PASS_ONE_BIT, &bit_chk, 0);
+ //USER Stop searching when the read test doesn't pass AND when we've seen a passing read on every bit
+ stop =
+ !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0, PASS_ONE_BIT,
+ &bit_chk, 0);
sticky_bit_chk = sticky_bit_chk | bit_chk;
stop = stop && (sticky_bit_chk == param->write_correct_mask);
- pr_debug("write_center(left): dtap=%u => " BTFLD_FMT
- " == " BTFLD_FMT " && %u [bit_chk=" BTFLD_FMT "]\n",
- d, sticky_bit_chk, param->write_correct_mask,
- stop, bit_chk);
+ DPRINT(2,
+ "write_center(left): dtap=%lu => " BTFLD_FMT " == " BTFLD_FMT
+ " && %lu [bit_chk=" BTFLD_FMT "]", d, sticky_bit_chk,
+ param->write_correct_mask, stop, bit_chk);
if (stop == 1) {
break;
} else {
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
if (bit_chk & 1) {
- /* Remember a passing test as the
- left_edge */
+ //USER Remember a passing test as the left_edge
left_edge[i] = d;
} else {
- /* If a left edge has not been seen yet,
- then a future passing test will mark
- this edge as the right edge */
- if (left_edge[i] ==
- IO_IO_OUT1_DELAY_MAX + 1) {
+ //USER If a left edge has not been seen yet, then a future passing test will mark this edge as the right edge
+ if (left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) {
right_edge[i] = -(d + 1);
}
}
- pr_debug("write_center[l,d=%u): "
- "bit_chk_test=%d left_edge[%u]: %d "
- "right_edge[%u]: %d\n",
- d, (int)(bit_chk & 1), i, left_edge[i],
- i, right_edge[i]);
+ DPRINT(2,
+ "write_center[l,d=%lu): bit_chk_test=%d left_edge[%lu]: %ld right_edge[%lu]: %ld",
+ d, (int)(bit_chk & 1), i, left_edge[i], i, right_edge[i]);
bit_chk = bit_chk >> 1;
}
}
}
- /* Reset DQ delay chains to 0 */
- scc_mgr_apply_group_dq_out1_delay (write_group, test_bgn, 0);
+ //USER Reset DQ delay chains to 0
+ scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, 0);
sticky_bit_chk = 0;
for (i = RW_MGR_MEM_DQ_PER_WRITE_DQS - 1;; i--) {
- pr_debug("write_center: left_edge[%u]: %d right_edge[%u]: "
- "%d\n", i, left_edge[i], i, right_edge[i]);
+ DPRINT(2, "write_center: left_edge[%lu]: %ld right_edge[%lu]: %ld", i, left_edge[i],
+ i, right_edge[i]);
- /* Check for cases where we haven't found the left edge,
- which makes our assignment of the the right edge invalid.
- Reset it to the illegal value. */
- if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) &&
- (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
+ //USER Check for cases where we haven't found the left edge, which makes our assignment of the the
+ //USER right edge invalid. Reset it to the illegal value.
+ if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)
+ && (right_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
right_edge[i] = IO_IO_OUT1_DELAY_MAX + 1;
- pr_debug("write_center: reset right_edge[%u]: %d\n",
- i, right_edge[i]);
+ DPRINT(2, "write_center: reset right_edge[%lu]: %ld", i, right_edge[i]);
}
-
- /* Reset sticky bit (except for bits where we have
- seen the left edge) */
+ //USER Reset sticky bit (except for bits where we have seen the left edge)
sticky_bit_chk = sticky_bit_chk << 1;
- if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1))
+ if ((left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1)) {
sticky_bit_chk = sticky_bit_chk | 1;
+ }
- if (i == 0)
+ if (i == 0) {
break;
+ }
}
- /* Search for the right edge of the window for each bit */
+ //USER Search for the right edge of the window for each bit
for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - start_dqs; d++) {
- scc_mgr_apply_group_dqs_io_and_oct_out1 (write_group,
- d + start_dqs);
+ scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, d + start_dqs);
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
-
- /* Stop searching when the read test doesn't pass AND when
- we've seen a passing read on every bit */
- stop = !rw_mgr_mem_calibrate_write_test (rank_bgn, write_group,
- 0, PASS_ONE_BIT, &bit_chk, 0);
+ if (QDRII) {
+ rw_mgr_mem_dll_lock_wait();
+ }
+ //USER Stop searching when the read test doesn't pass AND when we've seen a passing read on every bit
+ stop =
+ !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 0, PASS_ONE_BIT,
+ &bit_chk, 0);
if (stop) {
recover_mem_device_after_ck_dqs_violation();
}
sticky_bit_chk = sticky_bit_chk | bit_chk;
stop = stop && (sticky_bit_chk == param->write_correct_mask);
- pr_debug("write_center (right): dtap=%u => " BTFLD_FMT " == "
- BTFLD_FMT " && %u\n", d, sticky_bit_chk,
- param->write_correct_mask, stop);
+ DPRINT(2, "write_center (right): dtap=%lu => " BTFLD_FMT " == " BTFLD_FMT " && %lu",
+ d, sticky_bit_chk, param->write_correct_mask, stop);
if (stop == 1) {
if (d == 0) {
- for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS;
- i++) {
- /* d = 0 failed, but it passed when
- testing the left edge, so it must be
- marginal, set it to -1 */
- if (right_edge[i] ==
- IO_IO_OUT1_DELAY_MAX + 1 &&
- left_edge[i] !=
- IO_IO_OUT1_DELAY_MAX + 1) {
+ for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
+ //USER d = 0 failed, but it passed when testing the left edge, so it must be marginal, set it to -1
+ if (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1
+ && left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1) {
right_edge[i] = -1;
}
}
@@ -3510,63 +4033,49 @@ static uint32_t rw_mgr_mem_calibrate_writes_center (uint32_t rank_bgn,
} else {
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
if (bit_chk & 1) {
- /* Remember a passing test as
- the right_edge */
+ //USER Remember a passing test as the right_edge
right_edge[i] = d;
} else {
if (d != 0) {
- /* If a right edge has not
- been seen yet, then a future
- passing test will mark this
- edge as the left edge */
- if (right_edge[i] ==
- IO_IO_OUT1_DELAY_MAX
- + 1) {
+ //USER If a right edge has not been seen yet, then a future passing test will mark this edge as the left edge
+ if (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) {
left_edge[i] = -(d + 1);
}
} else {
- /* d = 0 failed, but it passed
- when testing the left edge, so
- it must be marginal, set it
- to -1 */
- if (right_edge[i] ==
- IO_IO_OUT1_DELAY_MAX +
- 1 && left_edge[i] !=
- IO_IO_OUT1_DELAY_MAX +
- 1) {
+ //USER d = 0 failed, but it passed when testing the left edge, so it must be marginal, set it to -1
+ if (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1
+ && left_edge[i] != IO_IO_OUT1_DELAY_MAX + 1) {
right_edge[i] = -1;
}
- /* If a right edge has not been
- seen yet, then a future passing
- test will mark this edge as the
- left edge */
- else if (right_edge[i] ==
- IO_IO_OUT1_DELAY_MAX +
- 1) {
+ //USER If a right edge has not been seen yet, then a future passing test will mark this edge as the left edge
+ else if (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) {
left_edge[i] = -(d + 1);
}
}
}
- pr_debug("write_center[r,d=%u): "
- "bit_chk_test=%d left_edge[%u]: %d "
- "right_edge[%u]: %d\n",
- d, (int)(bit_chk & 1), i, left_edge[i],
- i, right_edge[i]);
+ DPRINT(2,
+ "write_center[r,d=%lu): bit_chk_test=%d left_edge[%lu]: %ld right_edge[%lu]: %ld",
+ d, (int)(bit_chk & 1), i, left_edge[i], i, right_edge[i]);
bit_chk = bit_chk >> 1;
}
}
}
- /* Check that all bits have a window */
+ //USER Check that all bits have a window
for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
- pr_debug("write_center: left_edge[%u]: %d right_edge[%u]: "
- "%d\n", i, left_edge[i], i, right_edge[i]);
- if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1) ||
- (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1))
+ DPRINT(2, "write_center: left_edge[%lu]: %ld right_edge[%lu]: %ld", i, left_edge[i],
+ i, right_edge[i]);
+ BFM_GBL_SET(dq_write_left_edge[write_group][i], left_edge[i]);
+ BFM_GBL_SET(dq_write_right_edge[write_group][i], right_edge[i]);
+ if ((left_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)
+ || (right_edge[i] == IO_IO_OUT1_DELAY_MAX + 1)) {
+ set_failing_group_stage(test_bgn + i, CAL_STAGE_WRITES,
+ CAL_SUBSTAGE_WRITES_CENTER);
return 0;
+ }
}
- /* Find middle of window for each DQ bit */
+ //USER Find middle of window for each DQ bit
mid_min = left_edge[0] - right_edge[0];
min_index = 0;
for (i = 1; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
@@ -3577,178 +4086,170 @@ static uint32_t rw_mgr_mem_calibrate_writes_center (uint32_t rank_bgn,
}
}
- /* -mid_min/2 represents the amount that we need to move DQS.
- If mid_min is odd and positive we'll need to add one to
- make sure the rounding in further calculations is correct
- (always bias to the right), so just add 1 for all positive values */
- if (mid_min > 0)
+ //USER -mid_min/2 represents the amount that we need to move DQS. If mid_min is odd and positive we'll need to add one to
+ //USER make sure the rounding in further calculations is correct (always bias to the right), so just add 1 for all positive values
+ if (mid_min > 0) {
mid_min++;
-
+ }
mid_min = mid_min / 2;
- pr_debug("write_center: mid_min=%d\n", mid_min);
+ DPRINT(1, "write_center: mid_min=%ld", mid_min);
- /* Determine the amount we can change DQS (which is -mid_min) */
+ //USER Determine the amount we can change DQS (which is -mid_min)
orig_mid_min = mid_min;
new_dqs = start_dqs;
mid_min = 0;
- pr_debug("write_center: start_dqs=%d new_dqs=%d mid_min=%d\n", start_dqs, new_dqs, mid_min);
+ DPRINT(1, "write_center: start_dqs=%ld new_dqs=%ld mid_min=%ld", start_dqs, new_dqs,
+ mid_min);
- /* Initialize data for export structures */
+ //USER Initialize data for export structures
dqs_margin = IO_IO_OUT1_DELAY_MAX + 1;
- dq_margin = IO_IO_OUT1_DELAY_MAX + 1;
+ dq_margin = IO_IO_OUT1_DELAY_MAX + 1;
- /* add delay to bring centre of all DQ windows to the same "level" */
+ //USER add delay to bring centre of all DQ windows to the same "level"
for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
- /* Use values before divide by 2 to reduce round off error */
- shift_dq = (left_edge[i] - right_edge[i] -
- (left_edge[min_index] - right_edge[min_index]))/2 +
- (orig_mid_min - mid_min);
-
- pr_debug("write_center: before: shift_dq[%u]=%d\n", i,
- shift_dq);
-
- if (shift_dq + (int32_t)READ_SCC_DQ_OUT1_DELAY(i) >
- (int32_t)IO_IO_OUT1_DELAY_MAX) {
- shift_dq = (int32_t)IO_IO_OUT1_DELAY_MAX -
- READ_SCC_DQ_OUT1_DELAY(i);
- } else if (shift_dq + (int32_t)READ_SCC_DQ_OUT1_DELAY(i) < 0) {
- shift_dq = -(int32_t)READ_SCC_DQ_OUT1_DELAY(i);
- }
- pr_debug("write_center: after: shift_dq[%u]=%d\n",
- i, shift_dq);
- scc_mgr_set_dq_out1_delay(write_group, i,
- READ_SCC_DQ_OUT1_DELAY(i) + shift_dq);
- scc_mgr_load_dq (i);
-
- pr_debug("write_center: margin[%u]=[%d,%d]\n", i,
- left_edge[i] - shift_dq + (-mid_min),
- right_edge[i] + shift_dq - (-mid_min));
- /* To determine values for export structures */
- if (left_edge[i] - shift_dq + (-mid_min) < dq_margin)
+ //USER Use values before divide by 2 to reduce round off error
+ shift_dq =
+ (left_edge[i] - right_edge[i] -
+ (left_edge[min_index] - right_edge[min_index])) / 2 + (orig_mid_min - mid_min);
+
+ DPRINT(2, "write_center: before: shift_dq[%lu]=%ld", i, shift_dq);
+
+ if (shift_dq + (int32_t) READ_SCC_DQ_OUT1_DELAY(i) > (int32_t) IO_IO_OUT1_DELAY_MAX) {
+ shift_dq = (int32_t) IO_IO_OUT1_DELAY_MAX - READ_SCC_DQ_OUT1_DELAY(i);
+ } else if (shift_dq + (int32_t) READ_SCC_DQ_OUT1_DELAY(i) < 0) {
+ shift_dq = -(int32_t) READ_SCC_DQ_OUT1_DELAY(i);
+ }
+ DPRINT(2, "write_center: after: shift_dq[%lu]=%ld", i, shift_dq);
+ scc_mgr_set_dq_out1_delay(write_group, i, READ_SCC_DQ_OUT1_DELAY(i) + shift_dq);
+ scc_mgr_load_dq(i);
+
+ DPRINT(2, "write_center: margin[%lu]=[%ld,%ld]", i,
+ left_edge[i] - shift_dq + (-mid_min), right_edge[i] + shift_dq - (-mid_min));
+ //USER To determine values for export structures
+ if (left_edge[i] - shift_dq + (-mid_min) < dq_margin) {
dq_margin = left_edge[i] - shift_dq + (-mid_min);
- if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin)
+ }
+ if (right_edge[i] + shift_dq - (-mid_min) < dqs_margin) {
dqs_margin = right_edge[i] + shift_dq - (-mid_min);
+ }
}
- /* Move DQS */
- scc_mgr_apply_group_dqs_io_and_oct_out1 (write_group, new_dqs);
- IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
-
- /* Centre DM */
+ //USER Move DQS
+ if (QDRII) {
+ scc_mgr_set_group_dqs_io_and_oct_out1_gradual(write_group, new_dqs);
+ } else {
+ scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
+ IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+ }
- pr_debug("write_center: DM\n");
+ DPRINT(2, "write_center: DM");
- /* set the left and right edge of each bit to an illegal value */
- /* use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value */
- left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
+ //USER set the left and right edge of each bit to an illegal value
+ //USER use (IO_IO_OUT1_DELAY_MAX + 1) as an illegal value
+ left_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
right_edge[0] = IO_IO_OUT1_DELAY_MAX + 1;
- bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
- end_curr = IO_IO_OUT1_DELAY_MAX + 1;
- bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
- end_best = IO_IO_OUT1_DELAY_MAX + 1;
- win_best = 0;
+ int32_t bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
+ int32_t end_curr = IO_IO_OUT1_DELAY_MAX + 1;
+ int32_t bgn_best = IO_IO_OUT1_DELAY_MAX + 1;
+ int32_t end_best = IO_IO_OUT1_DELAY_MAX + 1;
+ int32_t win_best = 0;
- /* Search for the/part of the window with DM shift */
+ //USER Search for the/part of the window with DM shift
for (d = IO_IO_OUT1_DELAY_MAX; d >= 0; d -= DELTA_D) {
- scc_mgr_apply_group_dm_out1_delay (write_group, d);
+ scc_mgr_apply_group_dm_out1_delay(write_group, d);
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
- if (rw_mgr_mem_calibrate_write_test (rank_bgn, write_group, 1,
- PASS_ALL_BITS, &bit_chk, 0)) {
+ if (rw_mgr_mem_calibrate_write_test
+ (rank_bgn, write_group, 1, PASS_ALL_BITS, &bit_chk, 0)) {
- /*USE Set current end of the window */
+ //USE Set current end of the window
end_curr = -d;
- /* If a starting edge of our window has not been seen
- this is our current start of the DM window */
- if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
+ //USER If a starting edge of our window has not been seen this is our current start of the DM window
+ if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) {
bgn_curr = -d;
-
- /* If current window is bigger than best seen.
- Set best seen to be current window */
- if ((end_curr-bgn_curr+1) > win_best) {
- win_best = end_curr-bgn_curr+1;
+ }
+ //USER If current window is bigger than best seen. Set best seen to be current window
+ if ((end_curr - bgn_curr + 1) > win_best) {
+ win_best = end_curr - bgn_curr + 1;
bgn_best = bgn_curr;
end_best = end_curr;
}
} else {
- /* We just saw a failing test. Reset temp edge */
+ //USER We just saw a failing test. Reset temp edge
bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
end_curr = IO_IO_OUT1_DELAY_MAX + 1;
}
+
}
- /* Reset DM delay chains to 0 */
- scc_mgr_apply_group_dm_out1_delay (write_group, 0);
+ //USER Reset DM delay chains to 0
+ scc_mgr_apply_group_dm_out1_delay(write_group, 0);
- /* Check to see if the current window nudges up aganist 0 delay.
- If so we need to continue the search by shifting DQS otherwise DQS
- search begins as a new search */
+ //USER Check to see if the current window nudges up aganist 0 delay. If so we need to continue the search by shifting DQS otherwise DQS search begins as a new search
if (end_curr != 0) {
bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
end_curr = IO_IO_OUT1_DELAY_MAX + 1;
}
-
- /* Search for the/part of the window with DQS shifts */
+ //USER Search for the/part of the window with DQS shifts
for (d = 0; d <= IO_IO_OUT1_DELAY_MAX - new_dqs; d += DELTA_D) {
- /* Note: This only shifts DQS, so are we limiting ourselve to */
- /* width of DQ unnecessarily */
- scc_mgr_apply_group_dqs_io_and_oct_out1 (write_group,
- d + new_dqs);
+ // Note: This only shifts DQS, so are we limiting ourselve to
+ // width of DQ unnecessarily
+ scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, d + new_dqs);
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
- if (rw_mgr_mem_calibrate_write_test (rank_bgn, write_group, 1,
- PASS_ALL_BITS, &bit_chk, 0)) {
+ if (rw_mgr_mem_calibrate_write_test
+ (rank_bgn, write_group, 1, PASS_ALL_BITS, &bit_chk, 0)) {
- /*USE Set current end of the window */
+ //USE Set current end of the window
end_curr = d;
- /* If a beginning edge of our window has not been seen
- this is our current begin of the DM window */
- if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1)
+ //USER If a beginning edge of our window has not been seen this is our current begin of the DM window
+ if (bgn_curr == IO_IO_OUT1_DELAY_MAX + 1) {
bgn_curr = d;
-
- /* If current window is bigger than best seen. Set best
- seen to be current window */
- if ((end_curr-bgn_curr+1) > win_best) {
- win_best = end_curr-bgn_curr+1;
+ }
+ //USER If current window is bigger than best seen. Set best seen to be current window
+ if ((end_curr - bgn_curr + 1) > win_best) {
+ win_best = end_curr - bgn_curr + 1;
bgn_best = bgn_curr;
end_best = end_curr;
}
} else {
- /* We just saw a failing test. Reset temp edge */
+ //USER We just saw a failing test. Reset temp edge
recover_mem_device_after_ck_dqs_violation();
bgn_curr = IO_IO_OUT1_DELAY_MAX + 1;
end_curr = IO_IO_OUT1_DELAY_MAX + 1;
- /* Early exit optimization: if ther remaining delay
- chain space is less than already seen largest window
- we can exit */
- if ((win_best - 1) > (IO_IO_OUT1_DELAY_MAX - new_dqs - d))
+ //USER Early exit optimization: if ther remaining delay chain space is less than already seen largest window we can exit
+ if ((win_best - 1) > (IO_IO_OUT1_DELAY_MAX - new_dqs - d)) {
break;
+ }
+
}
}
- /* assign left and right edge for cal and reporting; */
- left_edge[0] = -1*bgn_best;
+ //USER assign left and right edge for cal and reporting;
+ left_edge[0] = -1 * bgn_best;
right_edge[0] = end_best;
- pr_debug("dm_calib: left=%d right=%d\n", left_edge[0], right_edge[0]);
+ DPRINT(2, "dm_calib: left=%ld right=%ld", left_edge[0], right_edge[0]);
+ BFM_GBL_SET(dm_left_edge[write_group][0], left_edge[0]);
+ BFM_GBL_SET(dm_right_edge[write_group][0], right_edge[0]);
- /* Move DQS (back to orig) */
- scc_mgr_apply_group_dqs_io_and_oct_out1 (write_group, new_dqs);
+ //USER Move DQS (back to orig)
+ scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, new_dqs);
- /* Move DM */
+ //USER Move DM
- /* Find middle of window for the DM bit */
+ //USER Find middle of window for the DM bit
mid = (left_edge[0] - right_edge[0]) / 2;
- /* only move right, since we are not moving DQS/DQ */
- if (mid < 0)
+ //USER only move right, since we are not moving DQS/DQ
+ if (mid < 0) {
mid = 0;
-
- /*dm_marign should fail if we never find a window */
+ }
+ //dm_marign should fail if we never find a window
if (win_best == 0) {
dm_margin = -1;
} else {
@@ -3758,188 +4259,436 @@ static uint32_t rw_mgr_mem_calibrate_writes_center (uint32_t rank_bgn,
scc_mgr_apply_group_dm_out1_delay(write_group, mid);
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
- pr_debug("dm_calib: left=%d right=%d mid=%d dm_margin=%d\n",
- left_edge[0], right_edge[0], mid, dm_margin);
+ DPRINT(2, "dm_calib: left=%ld right=%ld mid=%ld dm_margin=%ld",
+ left_edge[0], right_edge[0], mid, dm_margin);
- /* Export values */
+ //USER Export values
gbl->fom_out += dq_margin + dqs_margin;
- pr_debug("write_center: dq_margin=%d dqs_margin=%d dm_margin=%d\n",
- dq_margin, dqs_margin, dm_margin);
+ DPRINT(2, "write_center: dq_margin=%ld dqs_margin=%ld dm_margin=%ld", dq_margin, dqs_margin,
+ dm_margin);
- /* Do not remove this line as it makes sure all of our
- decisions have been applied */
+ //USER Do not remove this line as it makes sure all of our decisions have been applied
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
return (dq_margin >= 0) && (dqs_margin >= 0) && (dm_margin >= 0);
}
-/* calibrate the write operations */
+#else // !NEWVERSION_WRDESKEW
+
+static uint32_t rw_mgr_mem_calibrate_writes_center(uint32_t rank_bgn, uint32_t write_group,
+ uint32_t test_bgn)
+{
+ uint32_t i, p, d;
+ uint32_t mid;
+ t_btfld bit_chk, sticky_bit_chk;
+ uint32_t max_working_dq[RW_MGR_MEM_DQ_PER_WRITE_DQS];
+ uint32_t max_working_dm[RW_MGR_MEM_DATA_MASK_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH];
+ uint32_t dq_margin, dqs_margin, dm_margin;
+ uint32_t start_dqs;
+ uint32_t stop;
+
+ //USER per-bit deskew
+
+ for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
+ max_working_dq[i] = 0;
+ }
+
+ for (d = 1; d <= IO_IO_OUT1_DELAY_MAX; d++) {
+ scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, d);
+
+ IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+
+ if (!rw_mgr_mem_calibrate_write_test
+ (rank_bgn, write_group, 0, PASS_ONE_BIT, &bit_chk, 0)) {
+ break;
+ } else {
+ for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
+ if (bit_chk & 1) {
+ max_working_dq[i] = d;
+ }
+ bit_chk = bit_chk >> 1;
+ }
+ }
+ }
+
+ scc_mgr_apply_group_dq_out1_delay(write_group, test_bgn, 0);
+
+ //USER determine minimum of maximums
+
+ dq_margin = IO_IO_OUT1_DELAY_MAX;
+
+ for (i = 0; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++) {
+ if (max_working_dq[i] < dq_margin) {
+ dq_margin = max_working_dq[i];
+ }
+ }
+
+ //USER add delay to center DQ windows
+
+ for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
+ if (max_working_dq[i] > dq_margin) {
+ scc_mgr_set_dq_out1_delay(write_group, i, max_working_dq[i] - dq_margin);
+ } else {
+ scc_mgr_set_dq_out1_delay(write_group, i, 0);
+ }
+
+ scc_mgr_load_dq(p, i);
+ }
+
+ //USER sweep DQS window, may potentially have more window due to per-bit-deskew
+
+ start_dqs = READ_SCC_DQS_IO_OUT1_DELAY();
+
+ for (d = start_dqs + 1; d <= IO_IO_OUT1_DELAY_MAX; d++) {
+ scc_mgr_apply_group_dqs_io_and_oct_out1(write_group, d);
+
+ IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+
+ if (QDRII) {
+ rw_mgr_mem_dll_lock_wait();
+ }
+
+ if (!rw_mgr_mem_calibrate_write_test
+ (rank_bgn, write_group, 0, PASS_ALL_BITS, &bit_chk, 0)) {
+ break;
+ }
+ }
+
+ scc_mgr_set_dqs_out1_delay(write_group, start_dqs);
+ scc_mgr_set_oct_out1_delay(write_group, start_dqs);
+
+ dqs_margin = d - start_dqs - 1;
+
+ //USER time to center, +1 so that we don't go crazy centering DQ
+
+ mid = (dq_margin + dqs_margin + 1) / 2;
+
+ gbl->fom_out += dq_margin + dqs_margin;
+
+ scc_mgr_load_dqs_io();
+ scc_mgr_load_dqs_for_write_group(write_group);
+
+ //USER center dq
+
+ if (dq_margin > mid) {
+ for (i = 0, p = test_bgn; i < RW_MGR_MEM_DQ_PER_WRITE_DQS; i++, p++) {
+ scc_mgr_set_dq_out1_delay(write_group, i,
+ READ_SCC_DQ_OUT1_DELAY(i) + dq_margin - mid);
+ scc_mgr_load_dq(p, i);
+ }
+ dqs_margin += dq_margin - mid;
+ dq_margin -= dq_margin - mid;
+ }
+ //USER do dm centering
+
+ if (!RLDRAMX) {
+ dm_margin = IO_IO_OUT1_DELAY_MAX;
+
+ if (QDRII) {
+ sticky_bit_chk = 0;
+ for (i = 0; i < RW_MGR_MEM_DATA_MASK_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
+ i++) {
+ max_working_dm[i] = 0;
+ }
+ }
+
+ for (d = 1; d <= IO_IO_OUT1_DELAY_MAX; d++) {
+ scc_mgr_apply_group_dm_out1_delay(write_group, d);
+ IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+
+ if (DDRX) {
+ if (rw_mgr_mem_calibrate_write_test
+ (rank_bgn, write_group, 1, PASS_ALL_BITS, &bit_chk, 0)) {
+ max_working_dm[0] = d;
+ } else {
+ break;
+ }
+ } else {
+ stop =
+ !rw_mgr_mem_calibrate_write_test(rank_bgn, write_group, 1,
+ PASS_ALL_BITS, &bit_chk, 0);
+ sticky_bit_chk = sticky_bit_chk | bit_chk;
+ stop = stop && (sticky_bit_chk == param->read_correct_mask);
+
+ if (stop == 1) {
+ break;
+ } else {
+ for (i = 0;
+ i <
+ RW_MGR_MEM_DATA_MASK_WIDTH /
+ RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
+ if ((bit_chk & param->dm_correct_mask) ==
+ param->dm_correct_mask) {
+ max_working_dm[i] = d;
+ }
+ bit_chk =
+ bit_chk >> (RW_MGR_MEM_DATA_WIDTH /
+ RW_MGR_MEM_DATA_MASK_WIDTH);
+ }
+ }
+ }
+ }
+
+ i = 0;
+ for (i = 0; i < RW_MGR_NUM_DM_PER_WRITE_GROUP; i++) {
+ if (max_working_dm[i] > mid) {
+ scc_mgr_set_dm_out1_delay(write_group, i, max_working_dm[i] - mid);
+ } else {
+ scc_mgr_set_dm_out1_delay(write_group, i, 0);
+ }
+
+ scc_mgr_load_dm(i);
+
+ if (max_working_dm[i] < dm_margin) {
+ dm_margin = max_working_dm[i];
+ }
+ }
+ } else {
+ dm_margin = 0;
+ }
+
+ IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+
+ return (dq_margin + dqs_margin) > 0;
+}
+
+#endif
+
+//USER calibrate the write operations
-static uint32_t rw_mgr_mem_calibrate_writes (uint32_t rank_bgn, uint32_t g,
- uint32_t test_bgn)
+static uint32_t rw_mgr_mem_calibrate_writes(uint32_t rank_bgn, uint32_t g, uint32_t test_bgn)
{
+
reg_file_set_stage(CAL_STAGE_WRITES);
reg_file_set_sub_stage(CAL_SUBSTAGE_WRITES_CENTER);
+ //USER starting phases
+
+ //USER update info for sims
+
reg_file_set_group(g);
- return rw_mgr_mem_calibrate_writes_center (rank_bgn, g, test_bgn);
+ if (!rw_mgr_mem_calibrate_writes_center(rank_bgn, g, test_bgn)) {
+ set_failing_group_stage(g, CAL_STAGE_WRITES, CAL_SUBSTAGE_WRITES_CENTER);
+ return 0;
+ }
+
+ return 1;
}
-/* precharge all banks and activate row 0 in bank "000..." and bank "111..." */
-static void mem_precharge_and_activate (void)
+//USER precharge all banks and activate row 0 in bank "000..." and bank "111..."
+static void mem_precharge_and_activate(void)
{
uint32_t r;
for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r++) {
- /* set rank */
+ if (param->skip_ranks[r]) {
+ //USER request to skip the rank
+
+ continue;
+ }
+ //USER set rank
set_rank_and_odt_mask(r, RW_MGR_ODT_MODE_OFF);
- /* precharge all banks ... */
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
- __RW_MGR_PRECHARGE_ALL);
+ //USER precharge all banks ...
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_PRECHARGE_ALL);
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_0, 0, 0x0F);
- IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0,
- __RW_MGR_ACTIVATE_0_AND_1_WAIT1);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_0, 0, __RW_MGR_ACTIVATE_0_AND_1_WAIT1);
IOWR_32DIRECT(RW_MGR_LOAD_CNTR_1, 0, 0x0F);
- IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0,
- __RW_MGR_ACTIVATE_0_AND_1_WAIT2);
+ IOWR_32DIRECT(RW_MGR_LOAD_JUMP_ADD_1, 0, __RW_MGR_ACTIVATE_0_AND_1_WAIT2);
- /* activate rows */
- IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0,
- __RW_MGR_ACTIVATE_0_AND_1);
+ //USER activate rows
+ IOWR_32DIRECT(RW_MGR_RUN_SINGLE_GROUP, 0, __RW_MGR_ACTIVATE_0_AND_1);
}
}
-/* perform all refreshes necessary over all ranks */
+//USER perform all refreshes necessary over all ranks
+
+//USER Configure various memory related parameters.
-/* Configure various memory related parameters. */
-static void mem_config (void)
+static void mem_config(void)
{
uint32_t rlat, wlat;
uint32_t rw_wl_nop_cycles;
uint32_t max_latency;
- /* read in write and read latency */
+ //USER read in write and read latency
- wlat = IORD_32DIRECT (MEM_T_WL_ADD, 0);
- wlat += IORD_32DIRECT (DATA_MGR_MEM_T_ADD, 0);
- /* WL for hard phy does not include additive latency */
+ wlat = IORD_32DIRECT(MEM_T_WL_ADD, 0);
+ wlat += IORD_32DIRECT(DATA_MGR_MEM_T_ADD, 0); /* WL for hard phy does not include additive latency */
- /*
- * YYONG: add addtional write latency to offset the address/command extra clock cycle
- * YYONG: We change the AC mux setting causing AC to be delayed by one mem clock cycle
- * YYONG: only do this for DDR3
- */
-#if DDR3 || DDR2
- wlat += 1;
-#endif
- rlat = IORD_32DIRECT (MEM_T_RL_ADD, 0);
+ // YYONG: add addtional write latency to offset the address/command extra clock cycle
+ // YYONG: We change the AC mux setting causing AC to be delayed by one mem clock cycle
+ // YYONG: only do this for DDR3
+ wlat = wlat + 1;
+
+ rlat = IORD_32DIRECT(MEM_T_RL_ADD, 0);
if (QUARTER_RATE_MODE) {
- /* In Quarter-Rate the WL-to-nop-cycles works like this */
- /* 0,1 -> 0 */
- /* 2,3,4,5 -> 1 */
- /* 6,7,8,9 -> 2 */
- /* etc... */
+ //USER In Quarter-Rate the WL-to-nop-cycles works like this
+ //USER 0,1 -> 0
+ //USER 2,3,4,5 -> 1
+ //USER 6,7,8,9 -> 2
+ //USER etc...
rw_wl_nop_cycles = (wlat + 6) / 4 - 1;
- } else if (HALF_RATE_MODE) {
- /* In Half-Rate the WL-to-nop-cycles works like this */
- /* 0,1 -> -1 */
- /* 2,3 -> 0 */
- /* 4,5 -> 1 */
- /* etc... */
- if (wlat % 2)
+ } else if (HALF_RATE_MODE) {
+ //USER In Half-Rate the WL-to-nop-cycles works like this
+ //USER 0,1 -> -1
+ //USER 2,3 -> 0
+ //USER 4,5 -> 1
+ //USER etc...
+ if (wlat % 2) {
rw_wl_nop_cycles = ((wlat - 1) / 2) - 1;
- else
+ } else {
rw_wl_nop_cycles = (wlat / 2) - 1;
+ }
} else {
rw_wl_nop_cycles = wlat - 2;
-#if LPDDR2
- rw_wl_nop_cycles = rw_wl_nop_cycles + 1;
-#endif
}
-#if MULTIPLE_AFI_WLAT
- for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
- gbl->rw_wl_nop_cycles_per_group[i] = rw_wl_nop_cycles;
- }
-#endif
gbl->rw_wl_nop_cycles = rw_wl_nop_cycles;
-#if ARRIAV || CYCLONEV
- /* For AV/CV, lfifo is hardened and always runs at full rate so
- max latency in AFI clocks, used here, is correspondingly smaller */
+ //USER For AV/CV, lfifo is hardened and always runs at full rate
+ //USER so max latency in AFI clocks, used here, is correspondingly smaller
if (QUARTER_RATE_MODE) {
- max_latency = (1<<MAX_LATENCY_COUNT_WIDTH)/4 - 1;
+ max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) / 4 - 1;
} else if (HALF_RATE_MODE) {
- max_latency = (1<<MAX_LATENCY_COUNT_WIDTH)/2 - 1;
+ max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) / 2 - 1;
} else {
- max_latency = (1<<MAX_LATENCY_COUNT_WIDTH)/1 - 1;
+ max_latency = (1 << MAX_LATENCY_COUNT_WIDTH) / 1 - 1;
}
-#else
- max_latency = (1<<MAX_LATENCY_COUNT_WIDTH) - 1;
-#endif
- /* configure for a burst length of 8 */
+ //USER configure for a burst length of 8
if (QUARTER_RATE_MODE) {
- /* write latency */
+ //USER write latency
wlat = (wlat + 5) / 4 + 1;
- /* set a pretty high read latency initially */
+ //USER set a pretty high read latency initially
gbl->curr_read_lat = (rlat + 1) / 4 + 8;
} else if (HALF_RATE_MODE) {
- /* write latency */
+ //USER write latency
wlat = (wlat - 1) / 2 + 1;
- /* set a pretty high read latency initially */
+ //USER set a pretty high read latency initially
gbl->curr_read_lat = (rlat + 1) / 2 + 8;
} else {
- /* write latency */
- /* Adjust Write Latency for Hard PHY */
+ //USER write latency
+ // Adjust Write Latency for Hard PHY
wlat = wlat + 1;
-#if LPDDR2
- /* Add another one in hard for LPDDR2 since this value is raw
- from controller assume tdqss is one */
- wlat = wlat + 1;
-#endif
- /* set a pretty high read latency initially */
+ //USER set a pretty high read latency initially
gbl->curr_read_lat = rlat + 16;
}
- if (gbl->curr_read_lat > max_latency)
+ if (gbl->curr_read_lat > max_latency) {
gbl->curr_read_lat = max_latency;
-
+ }
IOWR_32DIRECT(PHY_MGR_PHY_RLAT, 0, gbl->curr_read_lat);
- /* advertise write latency */
+ //USER advertise write latency
gbl->curr_write_lat = wlat;
-#if MULTIPLE_AFI_WLAT
- for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
- IOWR_32DIRECT(PHY_MGR_AFI_WLAT, i*4, wlat - 2);
- }
-#else
IOWR_32DIRECT(PHY_MGR_AFI_WLAT, 0, wlat - 2);
-#endif
- mem_precharge_and_activate ();
+ //USER initialize bit slips
+
+ mem_precharge_and_activate();
+}
+
+//USER Set VFIFO and LFIFO to instant-on settings in skip calibration mode
+
+static void mem_skip_calibrate(void)
+{
+ uint32_t vfifo_offset;
+ uint32_t i, j, r;
+
+ // Need to update every shadow register set used by the interface
+ for (r = 0; r < RW_MGR_MEM_NUMBER_OF_RANKS; r += NUM_RANKS_PER_SHADOW_REG) {
+
+ // Strictly speaking this should be called once per group to make
+ // sure each group's delay chains are refreshed from the SCC register file,
+ // but since we're resetting all delay chains anyway, we can save some
+ // runtime by calling select_shadow_regs_for_update just once to switch rank.
+ select_shadow_regs_for_update(r, 0, 1);
+
+ //USER Set output phase alignment settings appropriate for skip calibration
+ for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
+
+ scc_mgr_set_dqs_en_phase(i, 0);
+ // Case:33398
+ //
+ // Write data arrives to the I/O two cycles before write latency is reached (720 deg).
+ // -> due to bit-slip in a/c bus
+ // -> to allow board skew where dqs is longer than ck
+ // -> how often can this happen!?
+ // -> can claim back some ptaps for high freq support if we can relax this, but i digress...
+ //
+ // The write_clk leads mem_ck by 90 deg
+ // The minimum ptap of the OPA is 180 deg
+ // Each ptap has (360 / IO_DLL_CHAIN_LENGH) deg of delay
+ // The write_clk is always delayed by 2 ptaps
+ //
+ // Hence, to make DQS aligned to CK, we need to delay DQS by:
+ // (720 - 90 - 180 - 2 * (360 / IO_DLL_CHAIN_LENGTH))
+ //
+ // Dividing the above by (360 / IO_DLL_CHAIN_LENGTH) gives us the number of ptaps, which simplies to:
+ //
+ // (1.25 * IO_DLL_CHAIN_LENGTH - 2)
+ scc_mgr_set_dqdqs_output_phase(i, (1.25 * IO_DLL_CHAIN_LENGTH - 2));
+ }
+
+ IOWR_32DIRECT(SCC_MGR_DQS_ENA, 0, 0xff);
+ IOWR_32DIRECT(SCC_MGR_DQS_IO_ENA, 0, 0xff);
+
+ for (i = 0; i < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; i++) {
+ IOWR_32DIRECT(SCC_MGR_GROUP_COUNTER, 0, i);
+ IOWR_32DIRECT(SCC_MGR_DQ_ENA, 0, 0xff);
+ IOWR_32DIRECT(SCC_MGR_DM_ENA, 0, 0xff);
+ }
+
+ IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+ }
+
+ // Compensate for simulation model behaviour
+ for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
+ scc_mgr_set_dqs_bus_in_delay(i, 10);
+ scc_mgr_load_dqs(i);
+ }
+ IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
+
+ //ArriaV has hard FIFOs that can only be initialized by incrementing in sequencer
+ vfifo_offset = CALIB_VFIFO_OFFSET;
+ for (j = 0; j < vfifo_offset; j++) {
+ if (HARD_PHY) {
+ IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_HARD_PHY, 0, 0xff);
+ } else {
+ IOWR_32DIRECT(PHY_MGR_CMD_INC_VFIFO_FR, 0, 0xff);
+ }
+ }
+
+ IOWR_32DIRECT(PHY_MGR_CMD_FIFO_RESET, 0, 0);
+
+ // For ACV with hard lfifo, we get the skip-cal setting from generation-time constant
+ gbl->curr_read_lat = CALIB_LFIFO_OFFSET;
+ IOWR_32DIRECT(PHY_MGR_PHY_RLAT, 0, gbl->curr_read_lat);
}
-/* Memory calibration entry point */
+//USER Memory calibration entry point
-static uint32_t mem_calibrate (void)
+static uint32_t mem_calibrate(void)
{
uint32_t i;
- uint32_t rank_bgn;
+ uint32_t rank_bgn, sr;
uint32_t write_group, write_test_bgn;
uint32_t read_group, read_test_bgn;
uint32_t run_groups, current_run;
+ uint32_t failing_groups = 0;
+ uint32_t group_failed = 0;
+ uint32_t sr_failed = 0;
- /* Initialize the data settings */
- pr_debug("Preparing to init data\n");
- pr_debug("Init complete\n");
+ // Initialize the data settings
+ DPRINT(1, "Preparing to init data");
+ DPRINT(1, "Init complete");
gbl->error_substage = CAL_SUBSTAGE_NIL;
gbl->error_stage = CAL_STAGE_NIL;
@@ -3947,93 +4696,188 @@ static uint32_t mem_calibrate (void)
gbl->fom_in = 0;
gbl->fom_out = 0;
- mem_config ();
+ mem_config();
if (ARRIAV || CYCLONEV) {
+ uint32_t bypass_mode = (HARD_PHY) ? 0x1 : 0x0;
for (i = 0; i < RW_MGR_MEM_IF_READ_DQS_WIDTH; i++) {
IOWR_32DIRECT(SCC_MGR_GROUP_COUNTER, 0, i);
- scc_set_bypass_mode(i);
+ scc_set_bypass_mode(i, bypass_mode);
}
}
- /* Zero all delay chain/phase settings for all
- groups and all shadow register sets */
- scc_mgr_zero_all ();
+ if (((DYNAMIC_CALIB_STEPS) & CALIB_SKIP_ALL) == CALIB_SKIP_ALL) {
+ //USER Set VFIFO and LFIFO to instant-on settings in skip calibration mode
- run_groups = ~0;
+ mem_skip_calibrate();
+ } else {
+ for (i = 0; i < NUM_CALIB_REPEAT; i++) {
- for (write_group = 0, write_test_bgn = 0; write_group
- < RW_MGR_MEM_IF_WRITE_DQS_WIDTH; write_group++,
- write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
+ //USER Zero all delay chain/phase settings for all groups and all shadow register sets
+ scc_mgr_zero_all();
- /* Mark the group as being attempted for calibration */
+ run_groups = ~param->skip_groups;
- current_run = run_groups & ((1 << RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
- run_groups = run_groups >> RW_MGR_NUM_DQS_PER_WRITE_GROUP;
+ for (write_group = 0, write_test_bgn = 0;
+ write_group < RW_MGR_MEM_IF_WRITE_DQS_WIDTH;
+ write_group++, write_test_bgn += RW_MGR_MEM_DQ_PER_WRITE_DQS) {
+ // Initialized the group failure
+ group_failed = 0;
- if (current_run == 0)
- continue;
+ // Mark the group as being attempted for calibration
- IOWR_32DIRECT(SCC_MGR_GROUP_COUNTER, 0, write_group);
- scc_mgr_zero_group (write_group, write_test_bgn, 0);
+ BFM_GBL_SET(vfifo_idx, 0);
+ current_run =
+ run_groups & ((1 << RW_MGR_NUM_DQS_PER_WRITE_GROUP) - 1);
+ run_groups = run_groups >> RW_MGR_NUM_DQS_PER_WRITE_GROUP;
- for (read_group = write_group * RW_MGR_NUM_DQS_PER_WRITE_GROUP,
- read_test_bgn = 0;
- read_group < (write_group + 1) * RW_MGR_NUM_DQS_PER_WRITE_GROUP;
- read_group++, read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
+ if (current_run == 0) {
+ continue;
+ }
- /* Calibrate the VFIFO */
- if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_VFIFO)) {
- if (!rw_mgr_mem_calibrate_vfifo(read_group, read_test_bgn))
- return 0;
- }
- }
+ IOWR_32DIRECT(SCC_MGR_GROUP_COUNTER, 0, write_group);
+ scc_mgr_zero_group(write_group, write_test_bgn, 0);
+
+ for (read_group =
+ write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH /
+ RW_MGR_MEM_IF_WRITE_DQS_WIDTH, read_test_bgn = 0;
+ read_group <
+ (write_group +
+ 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH /
+ RW_MGR_MEM_IF_WRITE_DQS_WIDTH && group_failed == 0;
+ read_group++, read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
+
+ //USER Calibrate the VFIFO
+ if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_VFIFO)) {
+ if (!rw_mgr_mem_calibrate_vfifo
+ (read_group, read_test_bgn)) {
+ group_failed = 1;
+
+ if (!
+ (gbl->
+ phy_debug_mode_flags &
+ PHY_DEBUG_SWEEP_ALL_GROUPS)) {
+ return 0;
+ }
+ }
+ }
+ }
- /* level writes (or align DK with CK for RLDRAMX) */
- if (!(ARRIAV || CYCLONEV)) {
- if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_WLEVEL)) {
- if (!rw_mgr_mem_calibrate_wlevel(write_group, write_test_bgn))
- return 0;
- }
- }
+ //USER level writes (or align DK with CK for RLDRAMX)
+ if (group_failed == 0) {
+ if ((DDRX || RLDRAMII) && !(ARRIAV || CYCLONEV)) {
+ if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_WLEVEL)) {
+ if (!rw_mgr_mem_calibrate_wlevel
+ (write_group, write_test_bgn)) {
+ group_failed = 1;
+
+ if (!
+ (gbl->
+ phy_debug_mode_flags &
+ PHY_DEBUG_SWEEP_ALL_GROUPS)) {
+ return 0;
+ }
+ }
+ }
+ }
+ }
+ //USER Calibrate the output side
+ if (group_failed == 0) {
+ for (rank_bgn = 0, sr = 0;
+ rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
+ rank_bgn += NUM_RANKS_PER_SHADOW_REG, ++sr) {
+ sr_failed = 0;
+ if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES)) {
+ if ((STATIC_CALIB_STEPS) &
+ CALIB_SKIP_DELAY_SWEEPS) {
+ //USER not needed in quick mode!
+ } else {
+ //USER Determine if this set of ranks should be skipped entirely
+ if (!param->skip_shadow_regs[sr]) {
+
+ //USER Select shadow register set
+ select_shadow_regs_for_update
+ (rank_bgn, write_group,
+ 1);
+
+ if (!rw_mgr_mem_calibrate_writes(rank_bgn, write_group, write_test_bgn)) {
+ sr_failed = 1;
+ if (!
+ (gbl->
+ phy_debug_mode_flags
+ &
+ PHY_DEBUG_SWEEP_ALL_GROUPS))
+ {
+ return 0;
+ }
+ }
+ }
+ }
+ }
+ if (sr_failed == 0) {
+ } else {
+ group_failed = 1;
+ }
+ }
+ }
- /* Calibrate the output side */
- for (rank_bgn = 0; rank_bgn < RW_MGR_MEM_NUMBER_OF_RANKS;
- rank_bgn += NUM_RANKS_PER_SHADOW_REG) {
- if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES)) {
- if ((STATIC_CALIB_STEPS) & CALIB_SKIP_DELAY_SWEEPS) {
- /* not needed in quick mode! */
- } else {
- /* Determine if this set of
- * ranks should be skipped
- * entirely */
- if (!rw_mgr_mem_calibrate_writes(rank_bgn, write_group, write_test_bgn))
- return 0;
+ if (group_failed == 0) {
+ for (read_group =
+ write_group * RW_MGR_MEM_IF_READ_DQS_WIDTH /
+ RW_MGR_MEM_IF_WRITE_DQS_WIDTH, read_test_bgn = 0;
+ read_group <
+ (write_group +
+ 1) * RW_MGR_MEM_IF_READ_DQS_WIDTH /
+ RW_MGR_MEM_IF_WRITE_DQS_WIDTH && group_failed == 0;
+ read_group++, read_test_bgn +=
+ RW_MGR_MEM_DQ_PER_READ_DQS) {
+
+ if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES)) {
+ if (!rw_mgr_mem_calibrate_vfifo_end
+ (read_group, read_test_bgn)) {
+ group_failed = 1;
+
+ if (!
+ (gbl->
+ phy_debug_mode_flags &
+ PHY_DEBUG_SWEEP_ALL_GROUPS)) {
+ return 0;
+ }
+ }
+ }
+ }
+ }
+
+ if (group_failed == 0) {
+
+#if STATIC_IN_RTL_SIM
+#else
+#endif
}
+
+ if (group_failed != 0) {
+ failing_groups++;
+ }
+
}
- }
- for (read_group = write_group * RW_MGR_NUM_DQS_PER_WRITE_GROUP,
- read_test_bgn = 0;
- read_group < (write_group + 1) * RW_MGR_NUM_DQS_PER_WRITE_GROUP;
- read_group++, read_test_bgn += RW_MGR_MEM_DQ_PER_READ_DQS) {
- if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_WRITES)) {
- if (!rw_mgr_mem_calibrate_vfifo_end(read_group, read_test_bgn))
- return 0;
+ // USER If there are any failing groups then report the failure
+ if (failing_groups != 0) {
+ return 0;
+ }
+ //USER Calibrate the LFIFO
+ if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_LFIFO)) {
+ //USER If we're skipping groups as part of debug, don't calibrate LFIFO
+ if (param->skip_groups == 0) {
+ if (!rw_mgr_mem_calibrate_lfifo()) {
+ return 0;
+ }
+ }
}
}
}
- /* Calibrate the LFIFO */
- if (!((STATIC_CALIB_STEPS) & CALIB_SKIP_LFIFO)) {
- /* If we're skipping groups as part of debug,
- don't calibrate LFIFO */
- if (!rw_mgr_mem_calibrate_lfifo ())
- return 0;
- }
-
- /* Do not remove this line as it makes sure all of our decisions
- have been applied */
+ //USER Do not remove this line as it makes sure all of our decisions have been applied
IOWR_32DIRECT(SCC_MGR_UPD, 0, 0);
return 1;
}
@@ -4043,32 +4887,51 @@ static uint32_t run_mem_calibrate(void)
uint32_t pass;
uint32_t debug_info;
- /* Initialize the debug status to show that calibration has started. */
- /* This should occur before anything else */
- /* Reset pass/fail status shown on afi_cal_success/fail */
+ // Initialize the debug status to show that calibration has started.
+ // This should occur before anything else
+ // Reset pass/fail status shown on afi_cal_success/fail
IOWR_32DIRECT(PHY_MGR_CAL_STATUS, 0, PHY_MGR_CAL_RESET);
+ //stop tracking manger
+ uint32_t ctrlcfg = IORD_32DIRECT(CTRL_CONFIG_REG, 0);
+
+ IOWR_32DIRECT(CTRL_CONFIG_REG, 0, ctrlcfg & 0xFFBFFFFF);
initialize();
- rw_mgr_mem_initialize ();
- pass = mem_calibrate ();
- mem_precharge_and_activate ();
+
+ rw_mgr_mem_initialize();
+
+ pass = mem_calibrate();
+
+ mem_precharge_and_activate();
+
+ //pe_checkout_pattern();
IOWR_32DIRECT(PHY_MGR_CMD_FIFO_RESET, 0, 0);
- /* Handoff */
+ if (pass) {
+#ifdef TEST_SIZE
+ if (!check_test_mem(0)) {
+ gbl->error_stage = 0x92;
+ gbl->error_group = 0x92;
+ }
+#endif
+ }
+
+ //USER Handoff
- /* Don't return control of the PHY back to AFI when in debug mode */
+ //USER Don't return control of the PHY back to AFI when in debug mode
if ((gbl->phy_debug_mode_flags & PHY_DEBUG_IN_DEBUG_MODE) == 0) {
- rw_mgr_mem_handoff ();
+ rw_mgr_mem_handoff();
- /* In Hard PHY this is a 2-bit control: */
- /* 0: AFI Mux Select */
- /* 1: DDIO Mux Select */
+ // In Hard PHY this is a 2-bit control:
+ // 0: AFI Mux Select
+ // 1: DDIO Mux Select
IOWR_32DIRECT(PHY_MGR_MUX_SEL, 0, 0x2);
}
+ IOWR_32DIRECT(CTRL_CONFIG_REG, 0, ctrlcfg);
if (pass) {
- pr_debug("CALIBRATION PASSED\n");
+ IPRINT("CALIBRATION PASSED");
gbl->fom_in /= 2;
gbl->fom_out /= 2;
@@ -4081,7 +4944,7 @@ static uint32_t run_mem_calibrate(void)
gbl->fom_out = 0xff;
}
- /* Update the FOM in the register file */
+ // Update the FOM in the register file
debug_info = gbl->fom_in;
debug_info |= gbl->fom_out << 8;
IOWR_32DIRECT(REG_FILE_FOM, 0, debug_info);
@@ -4090,32 +4953,32 @@ static uint32_t run_mem_calibrate(void)
IOWR_32DIRECT(PHY_MGR_CAL_STATUS, 0, PHY_MGR_CAL_SUCCESS);
} else {
- pr_debug("CALIBRATION FAILED\n");
+
+ IPRINT("CALIBRATION FAILED");
debug_info = gbl->error_stage;
debug_info |= gbl->error_substage << 8;
debug_info |= gbl->error_group << 16;
-
IOWR_32DIRECT(REG_FILE_FAILING_STAGE, 0, debug_info);
IOWR_32DIRECT(PHY_MGR_CAL_DEBUG_INFO, 0, debug_info);
IOWR_32DIRECT(PHY_MGR_CAL_STATUS, 0, PHY_MGR_CAL_FAIL);
- /* Update the failing group/stage in the register file */
+ // Update the failing group/stage in the register file
debug_info = gbl->error_stage;
debug_info |= gbl->error_substage << 8;
debug_info |= gbl->error_group << 16;
IOWR_32DIRECT(REG_FILE_FAILING_STAGE, 0, debug_info);
+
}
- /* Set the debug status to show that calibration has ended. */
- /* This should occur after everything else */
+ // Set the debug status to show that calibration has ended.
+ // This should occur after everything else
return pass;
}
-static void hc_initialize_rom_data(const uint32_t *inst_rom_init, uint32_t inst_rom_init_size,
- const uint32_t *ac_rom_init, uint32_t ac_rom_init_size)
+static void hc_initialize_rom_data(void)
{
uint32_t i;
@@ -4132,7 +4995,7 @@ static void hc_initialize_rom_data(const uint32_t *inst_rom_init, uint32_t inst_
static void initialize_reg_file(void)
{
- /* Initialize the register file with the correct data */
+ // Initialize the register file with the correct data
IOWR_32DIRECT(REG_FILE_SIGNATURE, 0, REG_FILE_INIT_SEQ_SIGNATURE);
IOWR_32DIRECT(REG_FILE_DEBUG_DATA_ADDR, 0, 0);
IOWR_32DIRECT(REG_FILE_CUR_STAGE, 0, 0);
@@ -4144,59 +5007,45 @@ static void initialize_reg_file(void)
static void initialize_hps_phy(void)
{
- /* These may need to be included also: */
- /* wrap_back_en (false) */
- /* atpg_en (false) */
- /* pipelineglobalenable (true) */
+ // These may need to be included also:
+ // wrap_back_en (false)
+ // atpg_en (false)
+ // pipelineglobalenable (true)
uint32_t reg;
- /* Tracking also gets configured here because it's in the
- same register */
+ // Tracking also gets configured here because it's in the same register
uint32_t trk_sample_count = 7500;
- uint32_t trk_long_idle_sample_count = (10 << 16) | 100;
- /* Format is number of outer loops in the 16 MSB, sample
- count in 16 LSB. */
+ uint32_t trk_long_idle_sample_count = (10 << 16) | 100; // Format is number of outer loops in the 16 MSB, sample count in 16 LSB.
reg = 0;
-#if DDR3 || DDR2
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(2);
-#else
- reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ACDELAYEN_SET(1);
-#endif
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQDELAYEN_SET(1);
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSDELAYEN_SET(1);
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_DQSLOGICDELAYEN_SET(1);
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_RESETDELAYEN_SET(0);
-#if LPDDR2
- reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(0);
-#else
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_LPDDRDIS_SET(1);
-#endif
- /* Fix for long latency VFIFO */
- /* This field selects the intrinsic latency to RDATA_EN/FULL path.
- 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles. */
+ // Fix for long latency VFIFO
+ // This field selects the intrinsic latency to RDATA_EN/FULL path. 00-bypass, 01- add 5 cycles, 10- add 10 cycles, 11- add 15 cycles.
reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_ADDLATSEL_SET(0);
- reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(
- trk_sample_count);
+ reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_SET(trk_sample_count);
IOWR_32DIRECT(BASE_MMR, SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_OFFSET, reg);
reg = 0;
- reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(
- trk_sample_count >>
- SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
- reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(
- trk_long_idle_sample_count);
+ reg |=
+ SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_SAMPLECOUNT_31_20_SET(trk_sample_count >>
+ SDR_CTRLGRP_PHYCTRL_PHYCTRL_0_SAMPLECOUNT_19_0_WIDTH);
+ reg |=
+ SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_SET(trk_long_idle_sample_count);
IOWR_32DIRECT(BASE_MMR, SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_OFFSET, reg);
reg = 0;
- reg |= SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(
- trk_long_idle_sample_count >>
- SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
+ reg |=
+ SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_LONGIDLESAMPLECOUNT_31_20_SET(trk_long_idle_sample_count
+ >>
+ SDR_CTRLGRP_PHYCTRL_PHYCTRL_1_LONGIDLESAMPLECOUNT_19_0_WIDTH);
IOWR_32DIRECT(BASE_MMR, SDR_CTRLGRP_PHYCTRL_PHYCTRL_2_OFFSET, reg);
}
-#if USE_DQS_TRACKING
-
static void initialize_tracking(void)
{
uint32_t concatenated_longidle = 0x0;
@@ -4206,8 +5055,7 @@ static void initialize_tracking(void)
uint32_t dtaps_per_ptap;
uint32_t tmp_delay;
- /* compute usable version of value in case we skip full
- computation later */
+ // compute usable version of value in case we skip full computation later
dtaps_per_ptap = 0;
tmp_delay = 0;
while (tmp_delay < IO_DELAY_PER_OPA_TAP) {
@@ -4216,25 +5064,18 @@ static void initialize_tracking(void)
}
dtaps_per_ptap--;
- concatenated_longidle = concatenated_longidle ^ 10;
- /*longidle outer loop */
+ concatenated_longidle = concatenated_longidle ^ 10; //longidle outer loop
concatenated_longidle = concatenated_longidle << 16;
- concatenated_longidle = concatenated_longidle ^ 100;
- /*longidle sample count */
+ concatenated_longidle = concatenated_longidle ^ 100; //longidle sample count
- concatenated_delays = concatenated_delays ^ 243;
- /* trfc, worst case of 933Mhz 4Gb */
+ concatenated_delays = concatenated_delays ^ 243; // trfc, worst case of 933Mhz 4Gb
concatenated_delays = concatenated_delays << 8;
- concatenated_delays = concatenated_delays ^ 14;
- /* trcd, worst case */
+ concatenated_delays = concatenated_delays ^ 14; // trcd, worst case
concatenated_delays = concatenated_delays << 8;
- concatenated_delays = concatenated_delays ^ 10;
- /* vfifo wait */
+ concatenated_delays = concatenated_delays ^ 10; // vfifo wait
concatenated_delays = concatenated_delays << 8;
- concatenated_delays = concatenated_delays ^ 4;
- /* mux delay */
+ concatenated_delays = concatenated_delays ^ 4; // mux delay
-#if DDR3 || LPDDR2
concatenated_rw_addr = concatenated_rw_addr ^ __RW_MGR_IDLE;
concatenated_rw_addr = concatenated_rw_addr << 8;
concatenated_rw_addr = concatenated_rw_addr ^ __RW_MGR_ACTIVATE_1;
@@ -4242,31 +5083,22 @@ static void initialize_tracking(void)
concatenated_rw_addr = concatenated_rw_addr ^ __RW_MGR_SGLE_READ;
concatenated_rw_addr = concatenated_rw_addr << 8;
concatenated_rw_addr = concatenated_rw_addr ^ __RW_MGR_PRECHARGE_ALL;
-#endif
-#if DDR3 || LPDDR2
concatenated_refresh = concatenated_refresh ^ __RW_MGR_REFRESH_ALL;
-#else
- concatenated_refresh = concatenated_refresh ^ 0;
-#endif
concatenated_refresh = concatenated_refresh << 24;
- concatenated_refresh = concatenated_refresh ^ 1000; /* trefi */
+ concatenated_refresh = concatenated_refresh ^ 1000; // trefi
- /* Initialize the register file with the correct data */
+ // Initialize the register file with the correct data
IOWR_32DIRECT(REG_FILE_DTAPS_PER_PTAP, 0, dtaps_per_ptap);
IOWR_32DIRECT(REG_FILE_TRK_SAMPLE_COUNT, 0, 7500);
IOWR_32DIRECT(REG_FILE_TRK_LONGIDLE, 0, concatenated_longidle);
IOWR_32DIRECT(REG_FILE_DELAYS, 0, concatenated_delays);
IOWR_32DIRECT(REG_FILE_TRK_RW_MGR_ADDR, 0, concatenated_rw_addr);
- IOWR_32DIRECT(REG_FILE_TRK_READ_DQS_WIDTH, 0,
- RW_MGR_MEM_IF_READ_DQS_WIDTH);
+ IOWR_32DIRECT(REG_FILE_TRK_READ_DQS_WIDTH, 0, RW_MGR_MEM_IF_READ_DQS_WIDTH);
IOWR_32DIRECT(REG_FILE_TRK_RFSH, 0, concatenated_refresh);
}
-#endif /* USE_DQS_TRACKING */
-
-static int socfpga_sdram_calibration(const uint32_t *inst_rom_init, uint32_t inst_rom_init_size,
- const uint32_t *ac_rom_init, uint32_t ac_rom_init_size)
+static int socfpga_mem_calibration(void)
{
param_t my_param;
gbl_t my_gbl;
@@ -4276,103 +5108,101 @@ static int socfpga_sdram_calibration(const uint32_t *inst_rom_init, uint32_t ins
param = &my_param;
gbl = &my_gbl;
- /* Initialize the debug mode flags */
+ // Initialize the debug mode flags
gbl->phy_debug_mode_flags = 0;
- /* Set the calibration enabled by default */
+ // Set the calibration enabled by default
gbl->phy_debug_mode_flags |= PHY_DEBUG_ENABLE_CAL_RPT;
+ // Only enable margining by default if requested
+ // Only sweep all groups (regardless of fail state) by default if requested
+ //Set enabled read test by default
- /* Initialize the register file */
+ // Initialize the register file
initialize_reg_file();
- /* Initialize any PHY CSR */
+ // Initialize any PHY CSR
initialize_hps_phy();
scc_mgr_initialize();
-#if USE_DQS_TRACKING
initialize_tracking();
-#endif
- /* Enable all ranks, groups */
- for (i = 0; i < RW_MGR_MEM_NUMBER_OF_RANKS; i++)
- param->skip_ranks[i] = 0;
+ // Initialize the TCL report. This must occur before any printf
+ // but after the debug mode flags and register file
- for (i = 0; i < NUM_SHADOW_REGS; ++i)
+ // USER Enable all ranks, groups
+ for (i = 0; i < RW_MGR_MEM_NUMBER_OF_RANKS; i++) {
+ param->skip_ranks[i] = 0;
+ }
+ for (i = 0; i < NUM_SHADOW_REGS; ++i) {
param->skip_shadow_regs[i] = 0;
-
+ }
param->skip_groups = 0;
- pr_debug("Preparing to start memory calibration\n");
-
- pr_debug("%s%s %s ranks=%u cs/dimm=%u dq/dqs=%u,%u vg/dqs=%u,%u "
- "dqs=%u,%u dq=%u dm=%u "
- "ptap_delay=%u dtap_delay=%u dtap_dqsen_delay=%u, dll=%u\n",
- RDIMM ? "r" : (LRDIMM ? "l" : ""),
- DDR2 ? "DDR2" : (DDR3 ? "DDR3" : (QDRII ? "QDRII" : (RLDRAMII ?
- "RLDRAMII" : (RLDRAM3 ? "RLDRAM3" : "??PROTO??")))),
- FULL_RATE ? "FR" : (HALF_RATE ? "HR" : (QUARTER_RATE ?
- "QR" : "??RATE??")),
- RW_MGR_MEM_NUMBER_OF_RANKS,
- RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
- RW_MGR_MEM_DQ_PER_READ_DQS,
- RW_MGR_MEM_DQ_PER_WRITE_DQS,
- RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
- RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS,
- RW_MGR_MEM_IF_READ_DQS_WIDTH,
- RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
- RW_MGR_MEM_DATA_WIDTH,
- RW_MGR_MEM_DATA_MASK_WIDTH,
- IO_DELAY_PER_OPA_TAP,
- IO_DELAY_PER_DCHAIN_TAP,
- IO_DELAY_PER_DQS_EN_DCHAIN_TAP,
- IO_DLL_CHAIN_LENGTH);
- pr_debug("max values: en_p=%u dqdqs_p=%u en_d=%u dqs_in_d=%u "
- "io_in_d=%u io_out1_d=%u io_out2_d=%u"
- "dqs_in_reserve=%u dqs_out_reserve=%u\n",
- IO_DQS_EN_PHASE_MAX,
- IO_DQDQS_OUT_PHASE_MAX,
- IO_DQS_EN_DELAY_MAX,
- IO_DQS_IN_DELAY_MAX,
- IO_IO_IN_DELAY_MAX,
- IO_IO_OUT1_DELAY_MAX,
- IO_IO_OUT2_DELAY_MAX,
- IO_DQS_IN_RESERVE,
- IO_DQS_OUT_RESERVE);
-
- hc_initialize_rom_data(inst_rom_init, inst_rom_init_size,
- ac_rom_init, ac_rom_init_size);
-
- /* update info for sims */
+ IPRINT("Preparing to start memory calibration");
+
+ DPRINT(1,
+ "%s%s %s ranks=%lu cs/dimm=%lu dq/dqs=%lu,%lu vg/dqs=%lu,%lu dqs=%lu,%lu dq=%lu dm=%lu "
+ "ptap_delay=%lu dtap_delay=%lu dtap_dqsen_delay=%lu, dll=%lu",
+ RDIMM ? "r" : (LRDIMM ? "l" : ""),
+ DDR2 ? "DDR2" : (DDR3 ? "DDR3"
+ : (QDRII ? "QDRII"
+ : (RLDRAMII ? "RLDRAMII"
+ : (RLDRAM3 ? "RLDRAM3" : "??PROTO??")))),
+ FULL_RATE ? "FR" : (HALF_RATE ? "HR" : (QUARTER_RATE ? "QR" : "??RATE??")),
+ (long unsigned int)RW_MGR_MEM_NUMBER_OF_RANKS,
+ (long unsigned int)RW_MGR_MEM_NUMBER_OF_CS_PER_DIMM,
+ (long unsigned int)RW_MGR_MEM_DQ_PER_READ_DQS,
+ (long unsigned int)RW_MGR_MEM_DQ_PER_WRITE_DQS,
+ (long unsigned int)RW_MGR_MEM_VIRTUAL_GROUPS_PER_READ_DQS,
+ (long unsigned int)RW_MGR_MEM_VIRTUAL_GROUPS_PER_WRITE_DQS,
+ (long unsigned int)RW_MGR_MEM_IF_READ_DQS_WIDTH,
+ (long unsigned int)RW_MGR_MEM_IF_WRITE_DQS_WIDTH,
+ (long unsigned int)RW_MGR_MEM_DATA_WIDTH,
+ (long unsigned int)RW_MGR_MEM_DATA_MASK_WIDTH,
+ (long unsigned int)IO_DELAY_PER_OPA_TAP, (long unsigned int)IO_DELAY_PER_DCHAIN_TAP,
+ (long unsigned int)IO_DELAY_PER_DQS_EN_DCHAIN_TAP,
+ (long unsigned int)IO_DLL_CHAIN_LENGTH);
+ DPRINT(1,
+ "max values: en_p=%lu dqdqs_p=%lu en_d=%lu dqs_in_d=%lu io_in_d=%lu io_out1_d=%lu io_out2_d=%lu"
+ "dqs_in_reserve=%lu dqs_out_reserve=%lu", (long unsigned int)IO_DQS_EN_PHASE_MAX,
+ (long unsigned int)IO_DQDQS_OUT_PHASE_MAX, (long unsigned int)IO_DQS_EN_DELAY_MAX,
+ (long unsigned int)IO_DQS_IN_DELAY_MAX, (long unsigned int)IO_IO_IN_DELAY_MAX,
+ (long unsigned int)IO_IO_OUT1_DELAY_MAX, (long unsigned int)IO_IO_OUT2_DELAY_MAX,
+ (long unsigned int)IO_DQS_IN_RESERVE, (long unsigned int)IO_DQS_OUT_RESERVE);
+
+ hc_initialize_rom_data();
+
+ //USER update info for sims
reg_file_set_stage(CAL_STAGE_NIL);
reg_file_set_group(0);
- /* Load global needed for those actions that require */
- /* some dynamic calibration support */
+ // Load global needed for those actions that require
+ // some dynamic calibration support
dyn_calib_steps = STATIC_CALIB_STEPS;
- /* Load global to allow dynamic selection of delay loop settings */
- /* based on calibration mode */
- if (!(dyn_calib_steps & CALIB_SKIP_DELAY_LOOPS)) {
+ // Load global to allow dynamic selection of delay loop settings
+ // based on calibration mode
+ if (!((DYNAMIC_CALIB_STEPS) & CALIB_SKIP_DELAY_LOOPS)) {
skip_delay_mask = 0xff;
} else {
skip_delay_mask = 0x0;
}
- pass = run_mem_calibrate ();
-
- pr_debug("Calibration complete\n");
- /* Send the end of transmission character */
- pr_debug("%c\n", 0x4);
-
- return pass == 0 ? -EINVAL : 0;
-}
+#ifdef TEST_SIZE
+ if (!check_test_mem(1)) {
+ IOWR_32DIRECT(PHY_MGR_CAL_DEBUG_INFO, 0, 0x9090);
+ IOWR_32DIRECT(PHY_MGR_CAL_STATUS, 0, PHY_MGR_CAL_FAIL);
+ }
+ write_test_mem();
+ if (!check_test_mem(0)) {
+ IOWR_32DIRECT(PHY_MGR_CAL_DEBUG_INFO, 0, 0x9191);
+ IOWR_32DIRECT(PHY_MGR_CAL_STATUS, 0, PHY_MGR_CAL_FAIL);
+ }
+#endif
-static int socfpga_mem_calibration(void)
-{
- int ret;
+ pass = run_mem_calibrate();
- ret = socfpga_sdram_calibration(inst_rom_init, inst_rom_init_size,
- ac_rom_init, ac_rom_init_size);
+ // EMPTY
- return !ret;
+ return pass;
}
diff --git a/arch/arm/mach-socfpga/include/mach/sequencer.h b/arch/arm/mach-socfpga/include/mach/sequencer.h
index 5bf524d854a7..8676b4efdd6b 100644
--- a/arch/arm/mach-socfpga/include/mach/sequencer.h
+++ b/arch/arm/mach-socfpga/include/mach/sequencer.h
@@ -2,70 +2,38 @@
#define _SEQUENCER_H_
/*
- * Copyright Altera Corporation (C) 2012-2014. All rights reserved
- *
- * SPDX-License-Identifier: BSD-3-Clause
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are met:
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * * Neither the name of Altera Corporation nor the
- * names of its contributors may be used to endorse or promote products
- * derived from this software without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
- * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
- * DISCLAIMED. IN NO EVENT SHALL ALTERA CORPORATION BE LIABLE FOR ANY
- * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
- * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
-
-#define MRS_MIRROR_PING_PONG_ATSO 0
-#define DYNAMIC_CALIBRATION_MODE 0
-#define STATIC_QUICK_CALIBRATION 0
-#define DISABLE_GUARANTEED_READ 0
-#define STATIC_SKIP_CALIBRATION 0
-
-#if ENABLE_ASSERT
-#define ERR_IE_TEXT "Internal Error: Sub-system: %s, File: %s, Line: %d\n%s%s"
-
-#define ALTERA_INTERNAL_ERROR(string) \
- {err_report_internal_error(string, "SEQ", __FILE__, __LINE__); \
- exit(-1); }
-
-#define ALTERA_ASSERT(condition) \
- if (!(condition)) {\
- ALTERA_INTERNAL_ERROR(#condition); }
-#define ALTERA_INFO_ASSERT(condition, text) \
- if (!(condition)) {\
- ALTERA_INTERNAL_ERROR(text); }
-
-#else
+* Copyright Altera Corporation (C) 2012-2014. All rights reserved
+*
+* SPDX-License-Identifier: BSD-3-Clause
+*
+* Redistribution and use in source and binary forms, with or without
+* modification, are permitted provided that the following conditions are met:
+* * Redistributions of source code must retain the above copyright
+* notice, this list of conditions and the following disclaimer.
+* * Redistributions in binary form must reproduce the above copyright
+* notice, this list of conditions and the following disclaimer in the
+* documentation and/or other materials provided with the distribution.
+* * Neither the name of Altera Corporation nor the
+* names of its contributors may be used to endorse or promote products
+* derived from this software without specific prior written permission.
+*
+* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
+* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+* DISCLAIMED. IN NO EVENT SHALL ALTERA CORPORATION BE LIABLE FOR ANY
+* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
+* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*/
#define ALTERA_ASSERT(condition)
-#define ALTERA_INFO_ASSERT(condition, text)
-
-#endif
-
+#define ALTERA_INFO_ASSERT(condition,text)
-#if RLDRAMII
-#define RW_MGR_NUM_DM_PER_WRITE_GROUP (1)
-#define RW_MGR_NUM_TRUE_DM_PER_WRITE_GROUP (1)
-#else
-#define RW_MGR_NUM_DM_PER_WRITE_GROUP (RW_MGR_MEM_DATA_MASK_WIDTH \
- / RW_MGR_MEM_IF_WRITE_DQS_WIDTH)
-#define RW_MGR_NUM_TRUE_DM_PER_WRITE_GROUP (RW_MGR_TRUE_MEM_DATA_MASK_WIDTH \
- / RW_MGR_MEM_IF_WRITE_DQS_WIDTH)
-#endif
+#define RW_MGR_NUM_DM_PER_WRITE_GROUP (RW_MGR_MEM_DATA_MASK_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH)
+#define RW_MGR_NUM_TRUE_DM_PER_WRITE_GROUP (RW_MGR_TRUE_MEM_DATA_MASK_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH)
#define RW_MGR_NUM_DQS_PER_WRITE_GROUP (RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH)
#define NUM_RANKS_PER_SHADOW_REG (RW_MGR_MEM_NUMBER_OF_RANKS / NUM_SHADOW_REGS)
@@ -75,11 +43,9 @@
#define RW_MGR_DI_BASE (BASE_RW_MGR + 0x0020)
-#if DDR3
#define DDR3_MR1_ODT_MASK 0xFFFFFD99
#define DDR3_MR2_ODT_MASK 0xFFFFF9FF
#define DDR3_AC_MIRR_MASK 0x020A8
-#endif /* DDR3 */
#define RW_MGR_LOAD_CNTR_0 BASE_RW_MGR + 0x0800
#define RW_MGR_LOAD_CNTR_1 BASE_RW_MGR + 0x0804
@@ -142,10 +108,7 @@
#define CAL_SUBSTAGE_REFRESH 1
#define MAX_RANKS (RW_MGR_MEM_NUMBER_OF_RANKS)
-#define MAX_DQS (RW_MGR_MEM_IF_WRITE_DQS_WIDTH > \
- RW_MGR_MEM_IF_READ_DQS_WIDTH ? \
- RW_MGR_MEM_IF_WRITE_DQS_WIDTH : \
- RW_MGR_MEM_IF_READ_DQS_WIDTH)
+#define MAX_DQS (RW_MGR_MEM_IF_WRITE_DQS_WIDTH > RW_MGR_MEM_IF_READ_DQS_WIDTH ? RW_MGR_MEM_IF_WRITE_DQS_WIDTH : RW_MGR_MEM_IF_READ_DQS_WIDTH)
#define MAX_DQ (RW_MGR_MEM_DATA_WIDTH)
#define MAX_DM (RW_MGR_MEM_DATA_MASK_WIDTH)
@@ -158,19 +121,22 @@
* - The remaining words are part of the transfer.
*/
-#define BASE_PTR_MGR SEQUENCER_PTR_MGR_INST_BASE
-#define BASE_PHY_MGR SDR_PHYGRP_PHYMGRGRP_ADDRESS
-#define BASE_RW_MGR SDR_PHYGRP_RWMGRGRP_ADDRESS
-#define BASE_DATA_MGR SDR_PHYGRP_DATAMGRGRP_ADDRESS
-#define BASE_SCC_MGR SDR_PHYGRP_SCCGRP_ADDRESS
-#define BASE_REG_FILE SDR_PHYGRP_REGFILEGRP_ADDRESS
-#define BASE_TIMER SEQUENCER_TIMER_INST_BASE
-#define BASE_MMR SDR_CTRLGRP_ADDRESS
-#define BASE_TRK_MGR (0x000D0000)
+/* Define the base address of each manager. */
+
+/* MarkW: how should these base addresses be done for A-V? */
+#define BASE_PTR_MGR SEQUENCER_PTR_MGR_INST_BASE
+#define BASE_PHY_MGR (0x00088000)
+#define BASE_RW_MGR (0x00090000)
+#define BASE_DATA_MGR (0x00098000)
+#define BASE_SCC_MGR SEQUENCER_SCC_MGR_INST_BASE
+#define BASE_REG_FILE SEQUENCER_REG_FILE_INST_BASE
+#define BASE_TIMER SEQUENCER_TIMER_INST_BASE
+#define BASE_MMR (0x000C0000)
+#define BASE_TRK_MGR (0x000D0000)
/* Register file addresses. */
-#define REG_FILE_SIGNATURE (BASE_REG_FILE + 0x0000)
-#define REG_FILE_DEBUG_DATA_ADDR (BASE_REG_FILE + 0x0004)
+#define REG_FILE_SIGNATURE (BASE_REG_FILE + 0x0000)
+#define REG_FILE_DEBUG_DATA_ADDR (BASE_REG_FILE + 0x0004)
#define REG_FILE_CUR_STAGE (BASE_REG_FILE + 0x0008)
#define REG_FILE_FOM (BASE_REG_FILE + 0x000C)
#define REG_FILE_FAILING_STAGE (BASE_REG_FILE + 0x0010)
@@ -184,37 +150,28 @@
#define REG_FILE_TRK_RW_MGR_ADDR (BASE_REG_FILE + 0x002C)
#define REG_FILE_TRK_READ_DQS_WIDTH (BASE_REG_FILE + 0x0030)
#define REG_FILE_TRK_RFSH (BASE_REG_FILE + 0x0034)
+#define CTRL_CONFIG_REG (BASE_MMR + 0x0000)
/* PHY manager configuration registers. */
-#define PHY_MGR_PHY_RLAT (BASE_PHY_MGR + 0x40 + 0x00)
-#define PHY_MGR_RESET_MEM_STBL (BASE_PHY_MGR + 0x40 + 0x04)
-#define PHY_MGR_MUX_SEL (BASE_PHY_MGR + 0x40 + 0x08)
-#define PHY_MGR_CAL_STATUS (BASE_PHY_MGR + 0x40 + 0x0c)
-#define PHY_MGR_CAL_DEBUG_INFO (BASE_PHY_MGR + 0x40 + 0x10)
-#define PHY_MGR_VFIFO_RD_EN_OVRD (BASE_PHY_MGR + 0x40 + 0x14)
-#if CALIBRATE_BIT_SLIPS
-#define PHY_MGR_FR_SHIFT (BASE_PHY_MGR + 0x40 + 0x20)
-#if MULTIPLE_AFI_WLAT
-#define PHY_MGR_AFI_WLAT (BASE_PHY_MGR + 0x40 + 0x20 + 4 * \
- RW_MGR_MEM_IF_WRITE_DQS_WIDTH)
-#else
-#define PHY_MGR_AFI_WLAT (BASE_PHY_MGR + 0x40 + 0x18)
-#endif
-#else
-#define PHY_MGR_AFI_WLAT (BASE_PHY_MGR + 0x40 + 0x18)
-#endif
-#define PHY_MGR_AFI_RLAT (BASE_PHY_MGR + 0x40 + 0x1c)
+#define PHY_MGR_PHY_RLAT (BASE_PHY_MGR + 0x4000)
+#define PHY_MGR_RESET_MEM_STBL (BASE_PHY_MGR + 0x4004)
+#define PHY_MGR_MUX_SEL (BASE_PHY_MGR + 0x4008)
+#define PHY_MGR_CAL_STATUS (BASE_PHY_MGR + 0x400c)
+#define PHY_MGR_CAL_DEBUG_INFO (BASE_PHY_MGR + 0x4010)
+#define PHY_MGR_VFIFO_RD_EN_OVRD (BASE_PHY_MGR + 0x4014)
+#define PHY_MGR_AFI_WLAT (BASE_PHY_MGR + 0x4018)
+#define PHY_MGR_AFI_RLAT (BASE_PHY_MGR + 0x401c)
-#define PHY_MGR_CAL_RESET (0)
+#define PHY_MGR_CAL_RESET (0)
#define PHY_MGR_CAL_SUCCESS (1)
-#define PHY_MGR_CAL_FAIL (2)
+#define PHY_MGR_CAL_FAIL (2)
/* PHY manager command addresses. */
#define PHY_MGR_CMD_INC_VFIFO_FR (BASE_PHY_MGR + 0x0000)
#define PHY_MGR_CMD_INC_VFIFO_HR (BASE_PHY_MGR + 0x0004)
-#define PHY_MGR_CMD_INC_VFIFO_HARD_PHY (BASE_PHY_MGR + 0x0004)
+#define PHY_MGR_CMD_INC_VFIFO_HARD_PHY (BASE_PHY_MGR + 0x0004)
#define PHY_MGR_CMD_FIFO_RESET (BASE_PHY_MGR + 0x0008)
#define PHY_MGR_CMD_INC_VFIFO_FR_HR (BASE_PHY_MGR + 0x000C)
#define PHY_MGR_CMD_INC_VFIFO_QR (BASE_PHY_MGR + 0x0010)
@@ -227,25 +184,25 @@
#define PHY_MGR_CALIB_SKIP_STEPS (BASE_PHY_MGR + 0x000c)
#define PHY_MGR_CALIB_VFIFO_OFFSET (BASE_PHY_MGR + 0x0010)
#define PHY_MGR_CALIB_LFIFO_OFFSET (BASE_PHY_MGR + 0x0014)
-#define PHY_MGR_RDIMM (BASE_PHY_MGR + 0x0018)
-#define PHY_MGR_MEM_T_WL (BASE_PHY_MGR + 0x001c)
-#define PHY_MGR_MEM_T_RL (BASE_PHY_MGR + 0x0020)
+#define PHY_MGR_RDIMM (BASE_PHY_MGR + 0x0018)
+#define PHY_MGR_MEM_T_WL (BASE_PHY_MGR + 0x001c)
+#define PHY_MGR_MEM_T_RL (BASE_PHY_MGR + 0x0020)
/* Data Manager */
-#define DATA_MGR_DRAM_CFG (BASE_DATA_MGR + 0x0000)
-#define DATA_MGR_MEM_T_WL (BASE_DATA_MGR + 0x0004)
-#define DATA_MGR_MEM_T_ADD (BASE_DATA_MGR + 0x0008)
-#define DATA_MGR_MEM_T_RL (BASE_DATA_MGR + 0x000C)
-#define DATA_MGR_MEM_T_RFC (BASE_DATA_MGR + 0x0010)
-#define DATA_MGR_MEM_T_REFI (BASE_DATA_MGR + 0x0014)
-#define DATA_MGR_MEM_T_WR (BASE_DATA_MGR + 0x0018)
-#define DATA_MGR_MEM_T_MRD (BASE_DATA_MGR + 0x001C)
-#define DATA_MGR_COL_WIDTH (BASE_DATA_MGR + 0x0020)
-#define DATA_MGR_ROW_WIDTH (BASE_DATA_MGR + 0x0024)
-#define DATA_MGR_BANK_WIDTH (BASE_DATA_MGR + 0x0028)
-#define DATA_MGR_CS_WIDTH (BASE_DATA_MGR + 0x002C)
-#define DATA_MGR_ITF_WIDTH (BASE_DATA_MGR + 0x0030)
-#define DATA_MGR_DVC_WIDTH (BASE_DATA_MGR + 0x0034)
+#define DATA_MGR_DRAM_CFG (BASE_DATA_MGR + 0x0000)
+#define DATA_MGR_MEM_T_WL (BASE_DATA_MGR + 0x0004)
+#define DATA_MGR_MEM_T_ADD (BASE_DATA_MGR + 0x0008)
+#define DATA_MGR_MEM_T_RL (BASE_DATA_MGR + 0x000C)
+#define DATA_MGR_MEM_T_RFC (BASE_DATA_MGR + 0x0010)
+#define DATA_MGR_MEM_T_REFI (BASE_DATA_MGR + 0x0014)
+#define DATA_MGR_MEM_T_WR (BASE_DATA_MGR + 0x0018)
+#define DATA_MGR_MEM_T_MRD (BASE_DATA_MGR + 0x001C)
+#define DATA_MGR_COL_WIDTH (BASE_DATA_MGR + 0x0020)
+#define DATA_MGR_ROW_WIDTH (BASE_DATA_MGR + 0x0024)
+#define DATA_MGR_BANK_WIDTH (BASE_DATA_MGR + 0x0028)
+#define DATA_MGR_CS_WIDTH (BASE_DATA_MGR + 0x002C)
+#define DATA_MGR_ITF_WIDTH (BASE_DATA_MGR + 0x0030)
+#define DATA_MGR_DVC_WIDTH (BASE_DATA_MGR + 0x0034)
#define MEM_T_WL_ADD DATA_MGR_MEM_T_WL
#define MEM_T_RL_ADD DATA_MGR_MEM_T_RL
@@ -253,114 +210,75 @@
#define CALIB_SKIP_DELAY_LOOPS (1 << 0)
#define CALIB_SKIP_ALL_BITS_CHK (1 << 1)
#define CALIB_SKIP_DELAY_SWEEPS (1 << 2)
-#define CALIB_SKIP_VFIFO (1 << 3)
-#define CALIB_SKIP_LFIFO (1 << 4)
-#define CALIB_SKIP_WLEVEL (1 << 5)
-#define CALIB_SKIP_WRITES (1 << 6)
+#define CALIB_SKIP_VFIFO (1 << 3)
+#define CALIB_SKIP_LFIFO (1 << 4)
+#define CALIB_SKIP_WLEVEL (1 << 5)
+#define CALIB_SKIP_WRITES (1 << 6)
#define CALIB_SKIP_FULL_TEST (1 << 7)
-#define CALIB_SKIP_ALL (CALIB_SKIP_VFIFO | \
- CALIB_SKIP_LFIFO | CALIB_SKIP_WLEVEL | \
- CALIB_SKIP_WRITES | CALIB_SKIP_FULL_TEST)
+#define CALIB_SKIP_ALL (CALIB_SKIP_VFIFO | CALIB_SKIP_LFIFO | CALIB_SKIP_WLEVEL | CALIB_SKIP_WRITES | CALIB_SKIP_FULL_TEST)
#define CALIB_IN_RTL_SIM (1 << 8)
/* Scan chain manager command addresses */
-#define WRITE_SCC_DQS_IN_DELAY(group, delay) \
- IOWR_32DIRECT(SCC_MGR_DQS_IN_DELAY, (group) << 2, delay)
-#define WRITE_SCC_DQS_EN_DELAY(group, delay) \
- IOWR_32DIRECT(SCC_MGR_DQS_EN_DELAY, (group) << 2, (delay) \
- + IO_DQS_EN_DELAY_OFFSET)
-#define WRITE_SCC_DQS_EN_PHASE(group, phase) \
- IOWR_32DIRECT(SCC_MGR_DQS_EN_PHASE, (group) << 2, phase)
-#define WRITE_SCC_DQDQS_OUT_PHASE(group, phase) \
- IOWR_32DIRECT(SCC_MGR_DQDQS_OUT_PHASE, (group) << 2, phase)
-#define WRITE_SCC_OCT_OUT1_DELAY(group, delay) \
- IOWR_32DIRECT(SCC_MGR_OCT_OUT1_DELAY, (group) << 2, delay)
+#define WRITE_SCC_DQS_IN_DELAY(group, delay) IOWR_32DIRECT(SCC_MGR_DQS_IN_DELAY, (group) << 2, delay)
+#define WRITE_SCC_DQS_EN_DELAY(group, delay) IOWR_32DIRECT(SCC_MGR_DQS_EN_DELAY, (group) << 2, (delay) + IO_DQS_EN_DELAY_OFFSET)
+#define WRITE_SCC_DQS_EN_PHASE(group, phase) IOWR_32DIRECT(SCC_MGR_DQS_EN_PHASE, (group) << 2, phase)
+#define WRITE_SCC_DQDQS_OUT_PHASE(group, phase) IOWR_32DIRECT(SCC_MGR_DQDQS_OUT_PHASE, (group) << 2, phase)
+#define WRITE_SCC_OCT_OUT1_DELAY(group, delay) IOWR_32DIRECT(SCC_MGR_OCT_OUT1_DELAY, (group) << 2, delay)
#define WRITE_SCC_OCT_OUT2_DELAY(group, delay)
#define WRITE_SCC_DQS_BYPASS(group, bypass)
-#define WRITE_SCC_DQ_OUT1_DELAY(pin, delay) \
- IOWR_32DIRECT(SCC_MGR_IO_OUT1_DELAY, (pin) << 2, delay)
+#define WRITE_SCC_DQ_OUT1_DELAY(pin, delay) IOWR_32DIRECT(SCC_MGR_IO_OUT1_DELAY, (pin) << 2, delay)
#define WRITE_SCC_DQ_OUT2_DELAY(pin, delay)
-#define WRITE_SCC_DQ_IN_DELAY(pin, delay) \
- IOWR_32DIRECT(SCC_MGR_IO_IN_DELAY, (pin) << 2, delay)
+#define WRITE_SCC_DQ_IN_DELAY(pin, delay) IOWR_32DIRECT(SCC_MGR_IO_IN_DELAY, (pin) << 2, delay)
#define WRITE_SCC_DQ_BYPASS(pin, bypass)
#define WRITE_SCC_RFIFO_MODE(pin, mode)
-#define WRITE_SCC_HHP_EXTRAS(value) \
- IOWR_32DIRECT(SCC_MGR_HHP_GLOBALS, SCC_MGR_HHP_EXTRAS_OFFSET, value)
-#define WRITE_SCC_HHP_DQSE_MAP(value) \
- IOWR_32DIRECT(SCC_MGR_HHP_GLOBALS, SCC_MGR_HHP_DQSE_MAP_OFFSET, value)
+#define WRITE_SCC_HHP_EXTRAS(value) IOWR_32DIRECT(SCC_MGR_HHP_GLOBALS, SCC_MGR_HHP_EXTRAS_OFFSET, value)
+#define WRITE_SCC_HHP_DQSE_MAP(value) IOWR_32DIRECT(SCC_MGR_HHP_GLOBALS, SCC_MGR_HHP_DQSE_MAP_OFFSET, value)
-#define WRITE_SCC_DQS_IO_OUT1_DELAY(delay) \
- IOWR_32DIRECT(SCC_MGR_IO_OUT1_DELAY, \
- (RW_MGR_MEM_DQ_PER_WRITE_DQS) << 2, delay)
+#define WRITE_SCC_DQS_IO_OUT1_DELAY(delay) IOWR_32DIRECT(SCC_MGR_IO_OUT1_DELAY, (RW_MGR_MEM_DQ_PER_WRITE_DQS) << 2, delay)
#define WRITE_SCC_DQS_IO_OUT2_DELAY(delay)
-#define WRITE_SCC_DQS_IO_IN_DELAY(delay) \
- IOWR_32DIRECT(SCC_MGR_IO_IN_DELAY, \
- (RW_MGR_MEM_DQ_PER_WRITE_DQS) << 2, delay)
+#define WRITE_SCC_DQS_IO_IN_DELAY(delay) IOWR_32DIRECT(SCC_MGR_IO_IN_DELAY, (RW_MGR_MEM_DQ_PER_WRITE_DQS) << 2, delay)
-#define WRITE_SCC_DM_IO_OUT1_DELAY(pin, delay) \
- IOWR_32DIRECT(SCC_MGR_IO_OUT1_DELAY, \
- (RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + pin) << 2, delay)
+#define WRITE_SCC_DM_IO_OUT1_DELAY(pin, delay) IOWR_32DIRECT(SCC_MGR_IO_OUT1_DELAY, (RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + pin) << 2, delay)
#define WRITE_SCC_DM_IO_OUT2_DELAY(pin, delay)
-#define WRITE_SCC_DM_IO_IN_DELAY(pin, delay) \
- IOWR_32DIRECT(SCC_MGR_IO_IN_DELAY, \
- (RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + pin) << 2, delay)
+#define WRITE_SCC_DM_IO_IN_DELAY(pin, delay) IOWR_32DIRECT(SCC_MGR_IO_IN_DELAY, (RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + pin) << 2, delay)
#define WRITE_SCC_DM_BYPASS(pin, bypass)
-#define READ_SCC_DQS_IN_DELAY(group) \
- IORD_32DIRECT(SCC_MGR_DQS_IN_DELAY, (group) << 2)
-#define READ_SCC_DQS_EN_DELAY(group) \
- (IORD_32DIRECT(SCC_MGR_DQS_EN_DELAY, (group) << 2) \
- - IO_DQS_EN_DELAY_OFFSET)
-#define READ_SCC_DQS_EN_PHASE(group) \
- IORD_32DIRECT(SCC_MGR_DQS_EN_PHASE, (group) << 2)
-#define READ_SCC_DQDQS_OUT_PHASE(group) \
- IORD_32DIRECT(SCC_MGR_DQDQS_OUT_PHASE, (group) << 2)
-#define READ_SCC_OCT_OUT1_DELAY(group) \
- IORD_32DIRECT(SCC_MGR_OCT_OUT1_DELAY, \
- (group * RW_MGR_MEM_IF_READ_DQS_WIDTH / \
- RW_MGR_MEM_IF_WRITE_DQS_WIDTH) << 2)
+#define READ_SCC_DQS_IN_DELAY(group) IORD_32DIRECT(SCC_MGR_DQS_IN_DELAY, (group) << 2)
+#define READ_SCC_DQS_EN_DELAY(group) (IORD_32DIRECT(SCC_MGR_DQS_EN_DELAY, (group) << 2) - IO_DQS_EN_DELAY_OFFSET)
+#define READ_SCC_DQS_EN_PHASE(group) IORD_32DIRECT(SCC_MGR_DQS_EN_PHASE, (group) << 2)
+#define READ_SCC_DQDQS_OUT_PHASE(group) IORD_32DIRECT(SCC_MGR_DQDQS_OUT_PHASE, (group) << 2)
+#define READ_SCC_OCT_OUT1_DELAY(group) IORD_32DIRECT(SCC_MGR_OCT_OUT1_DELAY, (group * RW_MGR_MEM_IF_READ_DQS_WIDTH / RW_MGR_MEM_IF_WRITE_DQS_WIDTH) << 2)
#define READ_SCC_OCT_OUT2_DELAY(group) 0
#define READ_SCC_DQS_BYPASS(group) 0
#define READ_SCC_DQS_BYPASS(group) 0
-#define READ_SCC_DQ_OUT1_DELAY(pin) \
- IORD_32DIRECT(SCC_MGR_IO_OUT1_DELAY, (pin) << 2)
+#define READ_SCC_DQ_OUT1_DELAY(pin) IORD_32DIRECT(SCC_MGR_IO_OUT1_DELAY, (pin) << 2)
#define READ_SCC_DQ_OUT2_DELAY(pin) 0
-#define READ_SCC_DQ_IN_DELAY(pin) \
- IORD_32DIRECT(SCC_MGR_IO_IN_DELAY, (pin) << 2)
+#define READ_SCC_DQ_IN_DELAY(pin) IORD_32DIRECT(SCC_MGR_IO_IN_DELAY, (pin) << 2)
#define READ_SCC_DQ_BYPASS(pin) 0
#define READ_SCC_RFIFO_MODE(pin) 0
-#define READ_SCC_DQS_IO_OUT1_DELAY() \
- IORD_32DIRECT(SCC_MGR_IO_OUT1_DELAY, \
- (RW_MGR_MEM_DQ_PER_WRITE_DQS) << 2)
+#define READ_SCC_DQS_IO_OUT1_DELAY() IORD_32DIRECT(SCC_MGR_IO_OUT1_DELAY, (RW_MGR_MEM_DQ_PER_WRITE_DQS) << 2)
#define READ_SCC_DQS_IO_OUT2_DELAY() 0
-#define READ_SCC_DQS_IO_IN_DELAY() \
- IORD_32DIRECT(SCC_MGR_IO_IN_DELAY, \
- (RW_MGR_MEM_DQ_PER_WRITE_DQS) << 2)
+#define READ_SCC_DQS_IO_IN_DELAY() IORD_32DIRECT(SCC_MGR_IO_IN_DELAY, (RW_MGR_MEM_DQ_PER_WRITE_DQS) << 2)
-#define READ_SCC_DM_IO_OUT1_DELAY(pin) \
- IORD_32DIRECT(SCC_MGR_IO_OUT1_DELAY, \
- (RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + pin) << 2)
+#define READ_SCC_DM_IO_OUT1_DELAY(pin) IORD_32DIRECT(SCC_MGR_IO_OUT1_DELAY, (RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + pin) << 2)
#define READ_SCC_DM_IO_OUT2_DELAY(pin) 0
-#define READ_SCC_DM_IO_IN_DELAY(pin) \
- IORD_32DIRECT(SCC_MGR_IO_IN_DELAY, \
- (RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + pin) << 2)
+#define READ_SCC_DM_IO_IN_DELAY(pin) IORD_32DIRECT(SCC_MGR_IO_IN_DELAY, (RW_MGR_MEM_DQ_PER_WRITE_DQS + 1 + pin) << 2)
#define READ_SCC_DM_BYPASS(pin) 0
-
#define SCC_MGR_GROUP_COUNTER (BASE_SCC_MGR + 0x0000)
#define SCC_MGR_DQS_IN_DELAY (BASE_SCC_MGR + 0x0100)
#define SCC_MGR_DQS_EN_PHASE (BASE_SCC_MGR + 0x0200)
@@ -368,28 +286,27 @@
#define SCC_MGR_DQDQS_OUT_PHASE (BASE_SCC_MGR + 0x0400)
#define SCC_MGR_OCT_OUT1_DELAY (BASE_SCC_MGR + 0x0500)
#define SCC_MGR_IO_OUT1_DELAY (BASE_SCC_MGR + 0x0700)
-#define SCC_MGR_IO_IN_DELAY (BASE_SCC_MGR + 0x0900)
-
+#define SCC_MGR_IO_IN_DELAY (BASE_SCC_MGR + 0x0900)
/* HHP-HPS-specific versions of some commands */
#define SCC_MGR_DQS_EN_DELAY_GATE (BASE_SCC_MGR + 0x0600)
#define SCC_MGR_IO_OE_DELAY (BASE_SCC_MGR + 0x0800)
-#define SCC_MGR_HHP_GLOBALS (BASE_SCC_MGR + 0x0A00)
-#define SCC_MGR_HHP_RFILE (BASE_SCC_MGR + 0x0B00)
+#define SCC_MGR_HHP_GLOBALS (BASE_SCC_MGR + 0x0A00)
+#define SCC_MGR_HHP_RFILE (BASE_SCC_MGR + 0x0B00)
/* HHP-HPS-specific values */
#define SCC_MGR_HHP_EXTRAS_OFFSET 0
#define SCC_MGR_HHP_DQSE_MAP_OFFSET 1
-#define SCC_MGR_DQS_ENA (BASE_SCC_MGR + 0x0E00)
-#define SCC_MGR_DQS_IO_ENA (BASE_SCC_MGR + 0x0E04)
-#define SCC_MGR_DQ_ENA (BASE_SCC_MGR + 0x0E08)
-#define SCC_MGR_DM_ENA (BASE_SCC_MGR + 0x0E0C)
-#define SCC_MGR_UPD (BASE_SCC_MGR + 0x0E20)
-#define SCC_MGR_ACTIVE_RANK (BASE_SCC_MGR + 0x0E40)
+#define SCC_MGR_DQS_ENA (BASE_SCC_MGR + 0x0E00)
+#define SCC_MGR_DQS_IO_ENA (BASE_SCC_MGR + 0x0E04)
+#define SCC_MGR_DQ_ENA (BASE_SCC_MGR + 0x0E08)
+#define SCC_MGR_DM_ENA (BASE_SCC_MGR + 0x0E0C)
+#define SCC_MGR_UPD (BASE_SCC_MGR + 0x0E20)
+#define SCC_MGR_ACTIVE_RANK (BASE_SCC_MGR + 0x0E40)
#define SCC_MGR_AFI_CAL_INIT (BASE_SCC_MGR + 0x0D00)
-/* PHY Debug mode flag constants */
+// PHY Debug mode flag constants
#define PHY_DEBUG_IN_DEBUG_MODE 0x00000001
#define PHY_DEBUG_ENABLE_CAL_RPT 0x00000002
#define PHY_DEBUG_ENABLE_MARGIN_RPT 0x00000004
@@ -397,46 +314,44 @@
#define PHY_DEBUG_DISABLE_GUARANTEED_READ 0x00000010
#define PHY_DEBUG_ENABLE_NON_DESTRUCTIVE_CALIBRATION 0x00000020
-/* Init and Reset delay constants - Only use if defined by sequencer_defines.h,
- * otherwise, revert to defaults
- * Default for Tinit = (0+1) * ((202+1) * (2 * 131 + 1) + 1) = 53532 = 200.75us @ 266MHz
- */
+// Init and Reset delay constants - Only use if defined by sequencer_defines.h,
+// otherwise, revert to defaults
+// Default for Tinit = (0+1) * ((202+1) * (2 * 131 + 1) + 1) = 53532 = 200.75us @ 266MHz
#ifdef TINIT_CNTR0_VAL
- #define SEQ_TINIT_CNTR0_VAL TINIT_CNTR0_VAL
+#define SEQ_TINIT_CNTR0_VAL TINIT_CNTR0_VAL
#else
- #define SEQ_TINIT_CNTR0_VAL 0
+#define SEQ_TINIT_CNTR0_VAL 0
#endif
#ifdef TINIT_CNTR1_VAL
- #define SEQ_TINIT_CNTR1_VAL TINIT_CNTR1_VAL
+#define SEQ_TINIT_CNTR1_VAL TINIT_CNTR1_VAL
#else
- #define SEQ_TINIT_CNTR1_VAL 202
+#define SEQ_TINIT_CNTR1_VAL 202
#endif
#ifdef TINIT_CNTR2_VAL
- #define SEQ_TINIT_CNTR2_VAL TINIT_CNTR2_VAL
+#define SEQ_TINIT_CNTR2_VAL TINIT_CNTR2_VAL
#else
- #define SEQ_TINIT_CNTR2_VAL 131
+#define SEQ_TINIT_CNTR2_VAL 131
#endif
-
-/* Default for Treset = (2+1) * ((252+1) * (2 * 131 + 1) + 1) = 133563 = 500.86us @ 266MHz */
+// Default for Treset = (2+1) * ((252+1) * (2 * 131 + 1) + 1) = 133563 = 500.86us @ 266MHz
#ifdef TRESET_CNTR0_VAL
- #define SEQ_TRESET_CNTR0_VAL TRESET_CNTR0_VAL
+#define SEQ_TRESET_CNTR0_VAL TRESET_CNTR0_VAL
#else
- #define SEQ_TRESET_CNTR0_VAL 2
+#define SEQ_TRESET_CNTR0_VAL 2
#endif
#ifdef TRESET_CNTR1_VAL
- #define SEQ_TRESET_CNTR1_VAL TRESET_CNTR1_VAL
+#define SEQ_TRESET_CNTR1_VAL TRESET_CNTR1_VAL
#else
- #define SEQ_TRESET_CNTR1_VAL 252
+#define SEQ_TRESET_CNTR1_VAL 252
#endif
#ifdef TRESET_CNTR2_VAL
- #define SEQ_TRESET_CNTR2_VAL TRESET_CNTR2_VAL
+#define SEQ_TRESET_CNTR2_VAL TRESET_CNTR2_VAL
#else
- #define SEQ_TRESET_CNTR2_VAL 131
+#define SEQ_TRESET_CNTR2_VAL 131
#endif
/* Bitfield type changes depending on protocol */
@@ -453,15 +368,24 @@ static const uint32_t ac_rom_init[];
/* parameter variable holder */
typedef struct param_type {
+ t_btfld dm_correct_mask;
t_btfld read_correct_mask;
t_btfld read_correct_mask_vg;
t_btfld write_correct_mask;
t_btfld write_correct_mask_vg;
+
+ /* set a particular entry to 1 if we need to skip a particular rank */
+
uint32_t skip_ranks[MAX_RANKS];
+
+ /* set a particular entry to 1 if we need to skip a particular group */
+
uint32_t skip_groups;
+
+ /* set a particular entry to 1 if the shadow register (which represents a set of ranks) needs to be skipped */
+
uint32_t skip_shadow_regs[NUM_SHADOW_REGS];
- /* set a particular entry to 1 if we need to skip a particular group */
} param_t;
/* global variable holder */
@@ -489,11 +413,41 @@ typedef struct gbl_type {
uint32_t fom_in;
uint32_t fom_out;
- /*USER Number of RW Mgr NOP cycles between
- write command and write data */
-#if MULTIPLE_AFI_WLAT
- uint32_t rw_wl_nop_cycles_per_group[RW_MGR_MEM_IF_WRITE_DQS_WIDTH];
-#endif
+ //USER Number of RW Mgr NOP cycles between write command and write data
uint32_t rw_wl_nop_cycles;
} gbl_t;
+
+// External global variables
+static gbl_t *gbl;
+static param_t *param;
+
+// External functions
+static uint32_t rw_mgr_mem_calibrate_full_test(uint32_t min_correct, t_btfld * bit_chk,
+ uint32_t test_dm);
+static uint32_t run_mem_calibrate(void);
+static void rw_mgr_mem_calibrate_eye_diag_aid(void);
+static void rw_mgr_load_mrs_calib(void);
+static void rw_mgr_load_mrs_exec(void);
+static void rw_mgr_mem_initialize(void);
+static void rw_mgr_mem_dll_lock_wait(void);
+static inline void scc_mgr_set_dq_in_delay(uint32_t write_group, uint32_t dq_in_group,
+ uint32_t delay);
+static inline void scc_mgr_set_dq_out1_delay(uint32_t write_group, uint32_t dq_in_group,
+ uint32_t delay);
+static inline void scc_mgr_set_dq_out2_delay(uint32_t write_group, uint32_t dq_in_group,
+ uint32_t delay);
+static inline void scc_mgr_load_dq(uint32_t dq_in_group);
+static inline void scc_mgr_set_dqs_bus_in_delay(uint32_t read_group, uint32_t delay);
+static inline void scc_mgr_load_dqs(uint32_t dqs);
+static void scc_mgr_set_group_dqs_io_and_oct_out1_gradual(uint32_t write_group, uint32_t delay);
+static void scc_mgr_set_group_dqs_io_and_oct_out2_gradual(uint32_t write_group, uint32_t delay);
+static void scc_mgr_set_dqs_en_delay_all_ranks(uint32_t read_group, uint32_t delay);
+static void scc_mgr_set_dqs_en_phase_all_ranks(uint32_t read_group, uint32_t phase);
+static void scc_mgr_set_dqdqs_output_phase_all_ranks(uint32_t write_group, uint32_t phase);
+static inline void scc_mgr_set_dm_out1_delay(uint32_t write_group, uint32_t dm, uint32_t delay);
+static inline void scc_mgr_set_dm_out2_delay(uint32_t write_group, uint32_t dm, uint32_t delay);
+static inline void scc_mgr_load_dm(uint32_t dm);
+static void rw_mgr_incr_vfifo_auto(uint32_t grp);
+static void rw_mgr_decr_vfifo_auto(uint32_t grp);
+static int sdram_calibration(void);
#endif
diff --git a/arch/arm/mach-socfpga/include/mach/sequencer_defines.h b/arch/arm/mach-socfpga/include/mach/sequencer_defines.h
new file mode 100644
index 000000000000..50598441069d
--- /dev/null
+++ b/arch/arm/mach-socfpga/include/mach/sequencer_defines.h
@@ -0,0 +1,6 @@
+#define TINIT_CNTR1_VAL 32
+#define TINIT_CNTR2_VAL 32
+#define TINIT_CNTR0_VAL 99
+#define TRESET_CNTR1_VAL 99
+#define TRESET_CNTR2_VAL 10
+#define TRESET_CNTR0_VAL 99
diff --git a/arch/arm/mach-socfpga/include/mach/system.h b/arch/arm/mach-socfpga/include/mach/system.h
new file mode 100755
index 000000000000..89527b2c2b40
--- /dev/null
+++ b/arch/arm/mach-socfpga/include/mach/system.h
@@ -0,0 +1,37 @@
+/*
+* Copyright Altera Corporation (C) 2012-2014. All rights reserved
+*
+* SPDX-License-Identifier: BSD-3-Clause
+*
+* Redistribution and use in source and binary forms, with or without
+* modification, are permitted provided that the following conditions are met:
+* * Redistributions of source code must retain the above copyright
+* notice, this list of conditions and the following disclaimer.
+* * Redistributions in binary form must reproduce the above copyright
+* notice, this list of conditions and the following disclaimer in the
+* documentation and/or other materials provided with the distribution.
+* * Neither the name of Altera Corporation nor the
+* names of its contributors may be used to endorse or promote products
+* derived from this software without specific prior written permission.
+*
+* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
+* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+* DISCLAIMED. IN NO EVENT SHALL ALTERA CORPORATION BE LIABLE FOR ANY
+* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
+* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*/
+
+#define SEQUENCER_DATA_MGR_INST_BASE 0x60000
+#define SEQUENCER_PHY_MGR_INST_BASE 0x48000
+#define SEQUENCER_PTR_MGR_INST_BASE 0x40000
+#define SEQUENCER_RAM_BASE 0x20000
+#define SEQUENCER_ROM_BASE 0x10000
+#define SEQUENCER_RW_MGR_INST_BASE 0x50000
+#define SEQUENCER_SCC_MGR_INST_BASE 0x58000
+#define SEQUENCER_REG_FILE_INST_BASE 0x70000
+#define SEQUENCER_TIMER_INST_BASE 0x78000
diff --git a/arch/arm/mach-socfpga/include/mach/tclrpt.h b/arch/arm/mach-socfpga/include/mach/tclrpt.h
new file mode 100755
index 000000000000..4345b23ba65c
--- /dev/null
+++ b/arch/arm/mach-socfpga/include/mach/tclrpt.h
@@ -0,0 +1,38 @@
+#ifndef TCLRPT_H_
+#define TCLRPT_H_
+/*
+* Copyright Altera Corporation (C) 2012-2014. All rights reserved
+*
+* SPDX-License-Identifier: BSD-3-Clause
+*
+* Redistribution and use in source and binary forms, with or without
+* modification, are permitted provided that the following conditions are met:
+* * Redistributions of source code must retain the above copyright
+* notice, this list of conditions and the following disclaimer.
+* * Redistributions in binary form must reproduce the above copyright
+* notice, this list of conditions and the following disclaimer in the
+* documentation and/or other materials provided with the distribution.
+* * Neither the name of Altera Corporation nor the
+* names of its contributors may be used to endorse or promote products
+* derived from this software without specific prior written permission.
+*
+* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
+* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+* DISCLAIMED. IN NO EVENT SHALL ALTERA CORPORATION BE LIABLE FOR ANY
+* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
+* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
+* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
+* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+*/
+
+#include "sequencer.h"
+
+#define TCLRPT_SET(item, value)
+
+// None of the rest of the file should be referenced if ENABLE_TCL_DEBUG is not
+// set (although it's not a problem if it is, but this helps catch errors)
+
+#endif
--
2.1.4
More information about the barebox
mailing list